Stata ERM : Les modèles de régression étendusAccueil Catalogue de formation Stata ERM : Les modèles de régression étendus Analyse Statistiques théoriques et appliquées Intra-entreprise Présentiel Distanciel Français Anglais Objectifs Apprendre à prendre en compte les différentes sources d’endogénéité dans un modèle de régression Pré-requis : De bonnes notions en méthodes de régression Moyens pédagogiques et d’encadrement Exposés suivis d’exercices pratiques avec mise en situation Supports pédagogiques et applications sous format numériques fournis Dispositif de suivi et d’évaluation des acquis : Questionnaires de positionnement avant la formation. Formulaires d’évaluation de la formation, à chaud et à froid. Résultats & compétences attendus à l’issue de la formation : Être en mesure d’identifier les sources d’endogénéité, les conséquences que cela peut avoir et les méthodes de traitement des différentes formes envisages dans un seul modèle. Programme de la formation 1 modules de 3,5 heures Les différentes sources d’endogénéité et les conséquences sur les propriétés des estimateurs Les méthodes d’estimation pour en tenir compte Une commande synthétique qui permet de considérer ces différentes sources dans un seul modèle Un exercice pratique Télécharger le programme complet Durée 3 heures Niveau Avancé Public Chercheurs souhaitant maîtriser le traitement des questions d’endogénéité dans un modèle de régression Participants 8 personnes maximum Nous contacter pour un devis personnalisé Vous recherchez des informations sur une formation ? Vous souhaitez mettre en place une session de formation sur mesure ? Contactez notre équipe pédagogique ! Remarque : JavaScript est requis pour ce contenu. Stata Rapide, précis et facile à utiliser, le logiciel Stata est la référence pour le traitement et l'analyse de données statistiques et de data science. Il répond à tous vos besoins en matière de science des données : manipulation des données, visualisation, statistiques et rapports automatisés. En savoir plus Formations à venir Communication et rédaction scientifique Intelligence Artificielle Générative pour la Veille scientifique - Concepts et applications Objectifs Décrire le principe de fonctionnement général du Deep Learning et de l’Intelligence Artificielle Générative. Utiliser des techniques de prompting avancées pour répondre à des besoins métier. Synthétiser des articles et contenus scientifiques en produisant des résumés concis qui mettent en évidence les points clés et les conclusions principales. Améliorer sa veille technologique en configurant, personnalisant et automatisant des outils d’intelligence artificielle générative pour surveiller et résumer les dernières recherches publiées dans des domaines spécifiques. Identifier les points clés d’un domaine scientifique spécifique et détecter les sujets de recherche manquants nécessaires pour compléter un modèle théorique existant. Traduire des articles 03 et 10 décembre S'inscrire Demander un devis Formations à venir Analyse Graphiques scientifiques avec PRISM Objectifs Découvrir l’ensemble des possibilités offertes par PRISM pour obtenir le graphique que l’on souhaite, tracé automatique des courbes d’ajustement compris. 05 et 06 décembre S'inscrire Demander un devis Formations à venir Analyse Formation modulaire à NVivo - Découvrir Nvivo Objectifs Comprendre le rôle de NVivo dans le processus de l’analyse qualitative. Comprendre et maîtriser l’environnement NVivo. Gestion des sources Gestion des cas Codage des sources Les matrices de croisement Documenter son analyse ; mémos, annotations et liens à. 10, 11, 12 et 13 décembre S'inscrire Demander un devis Formations à venir Communication et rédaction scientifique Intelligence Artificielle Générative pour l’Enseignement Recherche - Concepts et applications Objectifs Découvrer le principe de fonctionnement général du Deep Learning et de l’Intelligence Artificielle Générative et bénéficier du potentiel des outils d’IAG Utiliser des techniques de prompting avancées pour répondre à des besoins métier. Classifier les outils d’intelligence artificielle générative selon les médias mis en œuvre (text-to-text, text-to-image, etc.), et sélectionner le bon outil pour un cas d’usage précis. Produire des activités pédagogiques telles que des notes de cours, des guides d’étude, ou des résumés de chapitres pour aider les étudiants dans leur apprentissage. Concevoir des examens et des quiz à partir du contenu de formation développé pour les étudiants et gagner du temps dans la préparation de vos cours Générer des scénarios ou cas d’étude pour des travaux de groupe, basés sur des sujets d’actualité ou des avancées scientifiques pour décupler les possibilités d’animations de cours (contenu, ateliers de groupes, etc.) Adapter son enseignement et préparer ses apprenants à la révolution de l’IAG 16 et 20 décembre S'inscrire Demander un devis Formations à venir Analyse Origin : Fonctions de base Objectifs Importer des données de formats variés Réaliser des graphiques et les personnaliser (styles, templates, thèmes) Traiter les données et automatiser les calculs Réaliser des ajustements de données, créer ses propres fonctions d’ajustement Détecter et déconvoluer des pics 24 et 25 mars S'inscrire Demander un devis Previous Next