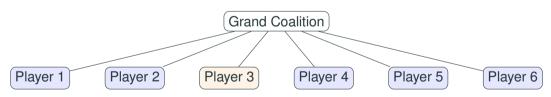
2025 Swiss Stata Conference

Shapley value calculations: Implementation and illustrations

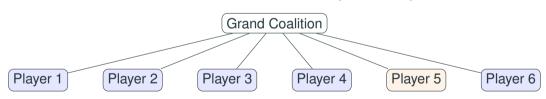
Philippe Van Kerm

Bern - November 21, 2025


[Outline]

The Shapley and Owen values

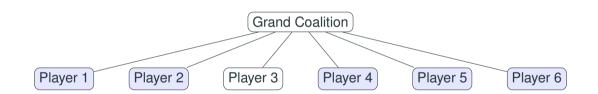
Implementation with shapowen

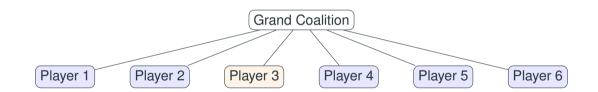

The Shapley value in a nutshell

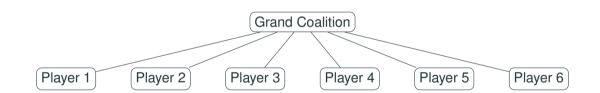
What is the contribution of an individual element i to the aggregate "value" collectively created by a set of elements $N = \{1, 2, ..., N\}$?

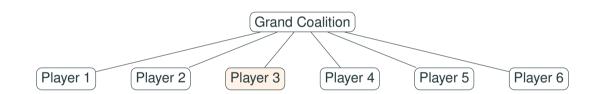
The Shapley value in a nutshell

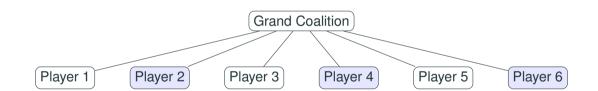
What is the contribution of an individual element i to the aggregate "value" collectively created by a set of elements $N = \{1, 2, ..., N\}$?

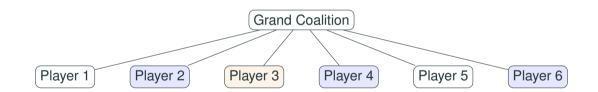

Diverse applications possible

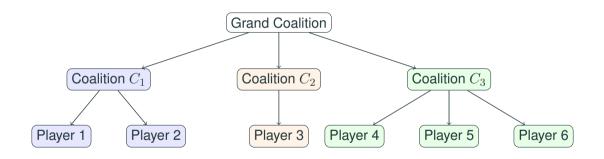

- Bargaining power of political parties in coalition formation
- Cost sharing: payment of individual users to total cost functions (cf. the "airport problem")
- ullet Contribution of individual covariates to a regression model's R^2
- Contribution of individual predictors to a machine learning predictive or classification model ("ShAP")
- Contribution of different sources of income or groups of individuals to inequality in household income (many applications to income distribution analysis (Shorrocks, 2013))

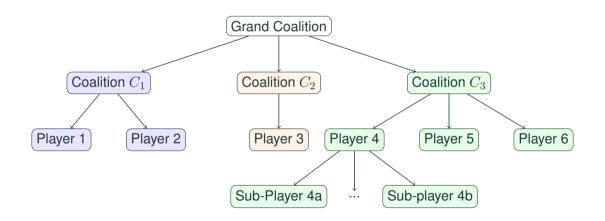

• ...


- A set of elements ('players') $N = \{1, 2, \dots, n\}$. N is the "grand coalition"
- ullet A characteristic function $\upsilon:2^N\to\mathbb{R}$ returns the collective output of any coalition formed by elements of N
- The Shapley value (Shapley, 1953) for element *i* is given by


$$\phi_i = \phi(i; \upsilon, N) = \underbrace{\sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(n-|S|-1)!}{n!}}_{\text{weighted sum across coalitions}} \underbrace{(\upsilon(S \cup \{i\}) - \upsilon(S))}_{\text{marginal contribution to coalition } S$$







Consider now preset (sub-)coalitions within the 'grand coalition': $C = \{C_1, C_2, \dots, C_k\}$ is a partition of N into disjoint coalitions

For example

- blocks of 'similar' covariates (e.g., demographic attributes, labour market characteristics and regional environment)
- blocks of 'similar' political parties (e.g., left, center, right?)
- blocks of 'similar' sources of income (public transfers vs market incomes)
- ..

The Owen value is the composition of Shapley values for each preset sub-coalition

$$\psi_i(v, \mathcal{C}) = \phi_i(v_{C_j}) \cdot \phi_{C_j}(v^{\mathcal{C}})$$

- Recursive additivity: the contributions of each player in a sub-coalition add up to the contribution of the sub-coalition to the grand coalition
- Evaluate the Shapley value of a player in a sub-coalition for all possible coalitions of sub-coalitions...
- ... for any level of nested structures

[Outline]

The Shapley and Owen values

Implementation with shapowen

shapowen - Simplified syntax

shapowen evaluates Shapley and Owen values for arbitrary Stata instructions provided these

- 1. take input 'players' specification as (some form of) a list
- 2. return evaluation in r() or e() scalars or matrices (or functions thereof)

Simplified syntax diagram

```
shapowen list-of-items
[, scalarexpressions(string) matrixexpressions(string) substitution(string) ... ]:
```

cmd ... @ ...

(Syntax borrowed from the package shapley available on SSC (Kolenikov, 2000).)

shapowen - Nested structures

Nested list of items

Nested structures are specified in *list-of-items* by grouping items within brackets, e.g,:

or

$$a(bc(def)(gh)i)((jkl)m)n$$
"opq"

NB: grouping by double-quotes forms an unbreakable item – here o p ${\bf q}$ are never evaluated separately.

shapowen - Implementation comments

- Simple (non-nested) Shapley value calculations are relatively straightforward to implement — shapowen mainly does 'bookkeeping' on behalf of the user
- Nested structures and Owen values are (very) significantly more difficult to deal with
 - shapowen leverages "advanced" Mata features such as classes (objects), structures, pointers and recursivity
- Speed is potentially an issue: the number of evaluations increases exponentially with the number of 'players'
 - » cmd needs to be fast or n needs to be relatively small

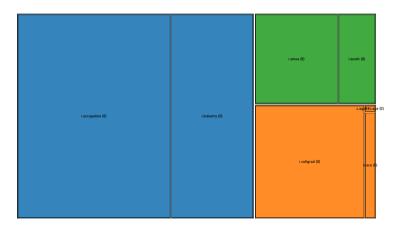
Addressing speed: approximation algorithms

- Approximation algorithms: evaluate marginal contributions $(\upsilon(S \cup \{i\}) \upsilon(S))$ on a random subset of all potential coalitions
- shapowen implements a permutation-based algorithm:
 - » Shapley value is also the average marginal contribution of i across all possible permutations of elements in the grand coalition
 - » Monte Carlo approximation:
 - take a random permutation of players/elements and evaluate marginal contributions in that sequence
 - 2. (optionally) evaluate marginal contributions on the inverse permutation (antithetic sampling)
 - 3. repeat for a (large) number of permutations
 - 4. approximate Shapley value of each element as average of their marginal contributions across permutations

Example 1: Ascribing covariate contributions to a regression's \mathbb{R}^2

		Linearized				
lnY	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	.0365523	.0028338	12.90	0.000	.0309972	. 04 21 074
c.age#c.age	0003494	.0000255	-13.73	0.000	0003993	0002995
educ						
[2] medium	. 2379809	.0209922	11.34	0.000	.1968296	. 2791323
[3] high	.4566599	.0210029	21.74	0.000	.4154875	.4978322
sex						
[2] female	036143	.0142383	-2.54	0.011	0640546	0082315
typehh2						
Couple only	.3099867	.016799	18.45	0.000	.2770553	.3429181
Couple with child(ren) and possibly others	.236953	.019542	12.13	0.000	.1986444	.2752616
Single with child(ren) and possibly others	0790149	.0229858	-3.44	0.001	1240743	0339555
Other configuration	. 2094785	.0422841	4.95	0.000	.1265883	.2923688
_cons	8.95386	.0766612	116.80	0.000	8.80358	9.10414

Example 1: Ascribing covariate contributions to a regression's \mathbb{R}^2


```
. shapowen c.age##c.age i.educ i.sex i.typehh2 , scalar(e(r2)) : ///
          svv : regress lnY @
. . . . . . . . . . . . . . . . . .
Instruction: svv : regress lnY @
Items list: c.age##c.age i.educ i.sex i.typehh2
 --- e(r2) ---
                                 Empty set value:
                                                            0
                                                                                Full set value: .2678879
                                        Nominal contribution
                                                                                    Relative contribution
                      Shaplev
                                Banzhaf
                                             First
                                                                  Shapley
                                                                             Banzhaf
                                                                                         First
                                                                                                     Last
                                                         Last
                        -Owen
                                  -Owen
                                                                     -Owen
                                                                               -Owen
            FULL
                     .2678879
    c.age##c.age
                     .0430312
                                .0419648
                                          .0613163
                                                     .0290116
                                                                  .1606314
                                                                            .1566507
                                                                                       . 2288881
                                                                                                 .1082975
          i.educ
                     .1329032
                               .1316128
                                          .1627722
                                                     .1081956
                                                                  .496115
                                                                            .4912983
                                                                                      .6076132
                                                                                                 .4038838
           i.sex
                     .0069608
                               .0068213
                                          .0132664
                                                     .0012132
                                                                  .025984
                                                                            .0254633
                                                                                       .0495222
                                                                                                 .0045286
       i.tvpehh2
                     .0849927
                               . 0836965
                                          .1113913
                                                     .0637788
                                                                  .3172696
                                                                             . 312431
                                                                                       .4158132
                                                                                                 . 2380803
```

Further examples

```
shapowen c.age##c.age i.educ i.typehh2 , scalar(_b[2.sex] e(N)) : ///
        svy : regress lnY i.sex 0
shapowen i.educ i.typehh2 i.sex c.age##c.age , scalar(e(r2)) separator(##) : ///
        svy: regress lnY @
shapowen Lh Lo K PB T O , scalar(r(coeff)) emptyvalue(0) : ///
        sgini @ [aw=hpwgt] , source
shapowen Lh Lo K PB T O , scalar(r(coeff)) emptyvalue(0) approx(10 , anti) : ///
        sgini @ [aw=hpwgt] , source
shapowen ((Lh Lo) K) ((P B) T) 0 . emptyvalue(0) scalar(r(coeff)) : ///
        sgini @ [aw=hpwgt] , source
shapowen Lh Lo K PB T O , scalar(r(coeff)) ///
 substitution(mn_Lh mn_Lo mn_K mn_PB mn_T mn_0) : ///
       sgini @ [aw=hpwgt] , source
shapowen 1 2 3 4 5 , scalar(r(coeff)) sep(,) emptyvalue(0) : //
       sgini Yalt [aw=hpwgt] if inlist(typehh2.0)
```

Note: Leveraging A. Naqvi's treemap for visualising nested structure

```
shapowen (i.race i.collgrad c.age##c.age) (i.industry i.occupation) (i.south i.smsa) /// , sca(e(r2_a)) treemap : regress lnw @
```


Using a wrapper program

```
cap pr drop changini
. pr def changini , rclass
1.    tempvar p rw
2.    svy : logit period '0'
3.    qui predict 'p' , rules
4.    qui gen 'rw' = cond(period==1 , 1 , 'p'/(1-'p'))
5.    sgini Yalt [aw=hpwgt*'rw'] if period==0
6.    return scalar gini = r(coeff)
7. end
```

Using a wrapper program

```
. shapowen i.typehh2 c.shearn i.educ i.sex , scal(r(gini)) : ///
          changini @
. . . . . . . . . . . . . . . . . .
Instruction: changini @
Items list: i.typehh2 c.shearn i.educ i.sex
 --- r(gini) ---
                                Empty set value: .2714685
                                                                             Full set value: .2521056
                                      Nominal contribution
                                                                                 Relative contribution
                     Shaplev
                               Banzhaf
                                           First
                                                      Last
                                                                Shaplev
                                                                          Banzhaf
                                                                                      First
                                                                                                 Last
                       -Owen
                                 -Owen
                                                                  -Owen
                                                                            -Owen
            FULL
                    -.019363
       i.tvpehh2
                   .0008653 .0012075
                                         .001221
                                                  -.000859
                                                              -.0446902 -.0623614 -.0630602 .0443643
        c.shearn
                   -.0191425 -.0186721 -.0211986 -.0189679
                                                               .9886135 .9643199 1.094803 .9795988
          i.educ
                   -.0032951 -.0028207 -.0050923 -.0033955
                                                               .1701762 .1456759 .2629924 .1753611
           i.sex
                    .0022093 .0026497 .0024182 .0002386
                                                              -.1140995 -.1368462 -.12489 -.0123222
```

Bootstrap inference

```
bootstrap ///
    diff=el(r(Shap0w),1,1) ///
    a=el(r(Shap0w),2,1) ///
    b=el(r(Shap0w),3,1) ///
    c=el(r(Shap0w),4,1) ///
    d=el(r(Shap0w),5,1) ///
    , reps(499) nodots : ///
    shapowen i.typehh2 c.shearn i.educ i.sex , scal(r(gini)) : ///
        changini @
```

Closing

- The Shapley value and Shapley value decompositions and their Owen counterparts for nested structures have many potential applications
- shapowen (available on SSC) facilitates their calculation with a generic prefix-based syntax and flexible input processing

Comments, feedback and suggestions welcome!

References i

- Kolenikov, S. (2000), 'Shapley: Stata module to perform additive decomposition of sample statistic'. URL: https://EconPapers.repec.org/RePEc:boc:bocode:s411401
- Owen, G. (1977), Values of games with a priori unions, *in* R. Henn and O. Moeschlin, eds, 'Mathematical Economics and Game Theory', Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 76–88.
- Shapley, L. S. (1953), A value for n-person games, *in* H. Kuhn and A. W. Tucker, eds, 'Contributions to the Theory of Games, Vol. II', Princeton: Princeton University Press, Princeton, NJ, pp. 307–317.
- Shorrocks, A. F. (2013), 'Decomposition procedures for distributional analysis: a unified framework based on the Shapley value', *Journal of Economic Inequality* **11**(1), 99–126.

URL: http://dx.doi.org/10.1007/s10888-011-9214-z