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P-values and ‘Statistical Significance’

P-values, ‘statistical significance’, ‘null hypothesis significance
testing’ (NHST)

Much attention in the applied statistics literature in recent years,
most of it critical.
(Curiously, much less attention to this in the econometrics literature
and community.)
American Statistical Association 2016 “Statement on Statistical
Significance and P-Values”: “Scientific conclusions and business or
policy decisions should not be based only on whether a p-value passes
a specific threshold.” (Wasserstein and Lazar, 2016)
2019 Nature paper by Amrhein et al. (2019), cosigned by over 800
researchers (including this author): researchers should “retire
statistical significance” in favor of more nuanced interpretation.
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A typical NHST example

A researcher estimates
yi = xiβ + εi

usually with some ‘controls’, and then tests the null hypothesis

H0 : β = 0

based on the estimated β̂ and its standard error. If the p-value is less than
5%, the researcher declares victory: β is ‘statistically significant’ and it’s
time to write it up and send it off to a journal.

There is a long list of reasons why this is Bad Practice.
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A typical NHST example (continued)

NHST: a researcher tests
H0 : β = 0

based on the estimated β̂ and its standard error, and if the p-value is less
than 5%, the researcher declares victory: β is ‘statistically significant’.

First on our list: it very likely doesn’t help answer any question of
economic interest.

As economists, we almost always want to know the answers to ‘How big is
the effect?’ and ‘How precisely is it estimated?’ Testing H0 : β = 0
answers neither of these questions.

Say the researcher rejects the null:
What if β̂ is extremely small but extremely precisely estimated?
What if β̂ is very large but the standard error is also huge?

(It is amazing that so many papers with this error still get published.)
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A typical NHST example (continued)

What should be done instead?

This is where there is less consensus. An optimist’s perspective: there is a
lot of good practice to choose from, and the lack of consensus on ‘best
practice’ is not a problem.

A minimalist alternative:
yi = xiβ + εi

and report a frequentist confidence interval for β. CIs have their own
interpretation issues, but they are minor compared to the NHST problem.

NB: the pedagogical challenge is how to teach the concept of “coverage”.

I now turn to testing for misspecification.
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Testing for misspecification

Austin Nichols and myself, in Nichols and Schaffer (2022), examined
misspecification testing from the same perspective as the critical literature
on NHST.

We argued that the same problems that face NHST also apply to “null
hypothesis misspecification testing” (NHMT).

That paper: Ramsey’s RESET test, White’s test for heteroskedasticity,
tests of instrument relevance, Hausman’s misspecification test for fixed vs
random effects.

This paper: tests of orthogonality conditions in models estimated by
instrumental variables (IV) and the Generalized Method of
Moments (GMM).
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Testing for misspecification

Terminology alert: “specification testing” is most commonly used now, but
the early literature also used ‘misspecification testing’. Austin and I prefer
the latter, in part because it gives us a nice acronym.

A test of misspecification is a test of the assumptions made by the
research with respect to a model’s estimation and testing.

1 Misspecification tests are a mainstay of applied econometrics, in both
practice and pedagogy.

2 Example: a researcher using a linear IV model cannot get published
without reporting tests of identification.

3 Any mainstream econometrics textbook - undergraduate or graduate -
that omitted specification tests would be criticized as inadequate and
incomplete.
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Null hypothesis misspecification testing (NHMT)

Misspecification tests are reported in terms of a test of a null hypothesis
that the specified model is correct.
Rejection of the null hypothesis is interpreted to mean that one or more of
the model assumptions fail, and the model should be rejected as incorrect.
In short: standard pedagogy and practice teaches and employs “null
hypothesis misspecification testing” (NHMT).
Curiously, the large literature on NHST, as far as Austin and I could tell,
has so far entirely ignored this practice of NHMT.
Surprising: many of the criticisms of dichotomous “reject or not” testing
clearly apply equally or even more strongly to misspecification tests.
Example: “macronumerosity” (in homage to Goldberger). With enough
data, the researcher rejects the null because they have enough information
in the dataset to detect model assumptions that are just approximations.
But how should the researcher respond?
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Practical steps to improve specification testing

How should testing for misspecification be done?
... Wait for it...
It depends on the test.

Main recommendation: misspecification tests should, if possible, be
cast in a metric that is immediately useful and informative to the
researcher.
First choice of metric is that of the parameter of interest. E.g., if a
model assumption fails, can this failure be expressed in terms of the
size of the bias in the parameter of interest?
Not always possible in the standard formulation of a test, but may be
possible to recast the test in a way that allows this. Example: White’s
test for heteroskedasticity (see Nichols and Schaffer (2022)).
And not always necessary. Some tests are, in fact, most naturally
interpreted in the NHMT framework. The dictum of “Retire
statistical significance” applies only selectively to NHMT.
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Testing orthogonality conditions

How should testing for violations of orthogonality conditions be done?

Hausman tests are the natural starting point.

In fact, the standard Hausman test for fixed vs random effects is a test of
orthogonality conditions, and is easily made robust for the non-i.i.d. case.

But this approach does not extend straightforwardly to tests of
orthogonality conditions in linear models:

Hausman tests coincide with GMM Distance tests only in the special
case where they have the same degrees of freedom and the i.i.d.
assumption is maintained.
The Hausman test lacks power to detect violations of certain
combinations of orthogonality conditions.
GMM Distance tests don’t have this problem, but artificial regression
versions are not easily interpreted because they are not in the metric
of the parameters being estimated.

9 / 47



Testing orthogonality conditions

How should testing for violations of orthogonality conditions be done?

Solution: estimate multiple specifications with different
combinations of instruments jointly in a pooled estimation, and
examining the differences between the estimated β̂s.

If a cluster-robust covariance estimator is used when estimating the
system, it is easy to construct standard errors and confidence intervals for
the differences between these β̂s.

System estimation for Hausman tests for inefficient estimators proposed by
Weesie (1999) and Creel (2004) (and then mostly forgotten). But they
were working in the NHMT paradigm.

But the key advantage to this approach to testing orthogonality conditions
is that the tests are automatically reported in the metric of the
parameters of interest. Easy to assess the consequences of failures of
orthogonality conditions and how precisely they’re estimated!
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Outline

Outline for rest of paper:
H, J and D statistics in linear IV/GMM models.
Why the artificial regression versions of J and D are not
straightforward to interpret.
The pooled estimation approach to testing orthogonality conditions.
IV cross-section example - the Acemoglu et al. (2001) paper on the
colonial origins of economic development.
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GMM estimator

Model to estimate:
yi = x′

iβ + εi

where the K regressors xi are potentially endogenous.

L potential instruments that satisfy the orthogonality conditions

E (ziεi) = 0

where the L × K matrix E (zix′
i) is full column rank.

The GMM estimator with weighting matrix Wn solves

β̂GMM = arg min
β̂0

Jn(β̂0) Jn(β̂0) = n gn(β̂0)′Wngn(β̂0)

where

gn(β̂0) = 1
n

n∑
i=1

gi gi ≡ zi ε̂i ≡ zi(yi − x′
i β̂GMM)
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Feasible Efficient GMM (FEGMM) estimator

The Feasible Efficient GMM estimator is the GMM estimator where the
weighting matrix Wn is Ŝ−1. The matrix Ŝ is a consistent estimate of
S ≡ AVar(gn), the asymptotic variance of gn.

The Feasible Efficient GMM estimator solves

β̂FEGMM = arg min
β̂0

Jn(β̂0) Jn(β̂0) = n gn(β̂0)′Ŝ−1gn(β̂0)

Classic Hansen-Sargan J test: value of the minimized efficient GMM
objective function Jn(β̂FEGMM). If the full model is correctly specified, the
value of the minimized GMM objective function using Ŝ−1 has a χ2

distribution with L − K degrees of freedom:

Jn(β̂FEGMM) →
d

χ2
L−K

Usual interpretation: a test of the orthogonality conditions E (ziεi) = 0.
Large test statistic suggests failure of one or more orthogonality conditions.
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Testing orthogonality conditions

The J test is usually interpreted as a joint test of all the orthogonality
conditions E (ziεi) ≡ E (gi) = 0.

Subsets of orthogonality conditions can be tested using the GMM Distance
Statistic D.

Setup:
E (gi ,AB) = 0 Full set of L orthogonality conditions
E (gi ,A) = 0 LA moment conditions believed to be true
E (gi ,B) = 0 LB ≡ L − LA moment conditions to be tested

We define two different efficient GMM estimators.

β̂AB uses the full set of orthogonality conditions A and B.

β̃A uses only orthogonality conditions A.
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GMM Distance Statistic D

The GMM Distance statistic:

D ≡ Jn(β̂AB) − Jn(β̃A)

D is the difference between minimized J statistics of the restricted and
unrestricted efficient GMM estimators.

Under the null hypothesis H0 : E (gi ,B) = 0, the GMM Distance statistic D
has a χ2 distribution with LB degrees of freedom:

D →
d

χ2
LB

Standard interpretation of a large D: reject the null hypothesis and
conclude that E (gi ,B) ̸= 0.

Better interpretation: a large D indicates that the two sets of orthogonality
conditions are identifying different βs, and a small D suggests that the two
sets of orthogonality conditions are identifying the same or similar βs.
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Hausman’s specification test

This intuition sounds like the intuition behind Hausman’s specification
test. We’ll see in a moment there’s a good reason for this.

Hausman’s (1978) misspecification test is possibly the best-known
misspecification test in econometrics. Standard practice in both teaching
and applications is to present the test in terms of NHMT. This is
uninformative and immediately falls foul of the macronumerosity problem.

But the nature of the Hausman test is such that addressing this problem is
very straightforward, because the test is already in the most useful metric
possible: that of the parameters themselves.

Important: to construct the vector of contrasts we use the IV estimator,
i.e., the Hausman test assumes homoskedasticity.
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Hausman’s specification test (continued)

The classical Hausman test formulation is a vector-of-contrasts test:

H = n
(
β̂A − β̂AB

)′ (
V(β̂A) − V(β̂AB)

)−1 (
β̂A − β̂AB

)
Under H0 : E (gi ,B) = 0 and the maintained assumption that E (gi ,A) = 0,
the Hausman statistic H is distributed as χ2(LB), the number of suspect
moment conditions being tested.

The problem here is macronumerosity: with real world data, the individual
orthogonality conditions are unlikely to be exactly true.

With a large enough sample size and real data, the researcher will reject
H0, even if the vector of contrasts between β̂A and β̂AB is extremely small
in practical terms.
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Hausman’s specification test (continued)

Much better: interpret the Hausman test in the metric of the test itself,
i.e., the parameter estimates.

Easy to do: the Hausman procedure automatically generates a covariance
matrix for the vector of contrasts.

In fact, it is automatically reported in the output of Stata’s hausman
command.

Key point: the test with SEs and confidence intervals for the difference in
β̂s.. The researcher can immediately assess how important in practical
terms are any differences between β̂A and β̂AB.
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GMM Distance Statistic D and Hausman H

The intuition for the interpretation of the GMM Distance Statistic D
sounded similar to the interpretation of a Hausman test, but the
relationship is closer than that.

Say independence and conditional homoskedasticity hold, so IV and OLS
estimators are efficient GMM estimators.

Then it can be shown (see Hayashi (2000), pp. 233-4 and the references
therein) that under conditional homoskedasticity and independence, if H
and D have the same degrees of freedom, they are numerically equal.

What does it mean when the degrees of freedom are different?

The Hausman test is designed to find violations of orthogonality conditions
via a single contrast of two βs.

When D has more degrees of freedom, it is in effect contrasting all the βs
identified by the different instruments. J and D therefore have power to
detect violations that H cannot. 19 / 47



J , D, H and NHMT

The drawback with the traditional approach is again NHMT:
Unrealistic to expect orthogonality conditions to be perfectly satisfied.
With enough data, even a minor violation that creates a small and
economically meaningless but nonzero bias will lead to the rejection
of the null that the instruments are valid.
Noisy estimates may lead to a failure to reject, not because all the
instruments are valid but because there is not enough information in
the data to detect meaningful violations.

How to proceed?

Problem: drawbacks to traditional approaches to both H and J/D.
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Limitations to traditional H

The appeal of the Hausman formulation is that problems with
orthogonality conditions are in a readily interpretable metric, namely the
coefficient estimates themselves.

But the original Hausman approach is not available for the non-i.i.d. case,
and it lacks power to detect certain violations of the orthogonality
conditions.

An artificial regression approach to the Hausman test is possible, and can
be made robust to non-i.i.d. settings (see e.g. Wooldridge (2002),
chapter 6).

But the coefficients on the artificial regressors do not have a convenient
interpretation, and the problem of lack of power in certain directions
remains.
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Limitations to traditional J and D

An artificial regression approach to J/D/GMM-type tests also is available,
but it too has drawbacks that make it difficult to use to assess
orthogonality failures.

Use the same notation as above, i.e., the zi ,B instruments are to be tested.
Also denote the projection matrix using the A instruments by PzA.

Artificial regression version: estimate including (I − PzA)ziB, i.e., the
residuals from projecting the suspect instruments onto the A instruments.
A joint test of the significance of the coefficients is equivalent to a
GMM-type test of the suspect orthogonality conditions.

The problem here is that the additional regressors do not have an easy
interpretation; they are in the metric of the instruments, rather than the
regressors. No straightforward interpretation in terms of the βs is available.

Another approach is needed.
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Testing orthogonality conditions via pooled regressions

A simple and direct approach: why not estimate the equation of interest
separately using different combinations of instruments as desired, and
examine directly the difference between the estimated βs via a pooled
regression?

This approach was suggested by Weesie (1999) and Creel (2004), who
were motivated primarily to generalize the Hausman approach in order to
accommodate inefficient as well as efficient estimators, but still working
within the NHMT paradigm.

The key payoff to this approach, however, is that it lets us go beyond the
“reject” vs “fail to reject” conclusions of NHMT to examine directly how
different orthogonality conditions and their failures affect the parameter
estimates.
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An example

Consider the basic case of K = 1, i.e., a single endogenous regressor and
no exogenous regressors.

Say also we have three possible instruments: zi ,A, zi ,B and zi ,C .

The instruments can be used in various combinations; say we use them
individually in three separate just-identified estimations, plus all three
together in an overidentified estimation.

We can estimate this set of four equations as a system. The simplest way
to do this is to stack the data matrices and then estimate the pooled
regression using instrumental variables.

The covariance estimator for this pooled regression is just the standard
cluster-robust covariance estimator, where we cluster by observation i . No
other adjustment needed!

24 / 47



An example (continued)

Y ≡


y
y
y
y

 X ≡ I(4) ⊗ x ≡


x 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x


The instrument set is a 4n × 6 data matrix; each block of n observations
corresponds to a different IV estimator.

The IV estimator is simply the vector of the four different possible IV
estimators.

Z ≡


zA 0 0 0 0 0
0 zB 0 0 0 0
0 0 zC 0 0 0
0 0 0 zA zB zC

 B̂ ≡


β̂A
β̂B
β̂C

β̂ABC


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An example (continued)

The IV estimator is simply the vector of the four different possible IV
estimators.

Z ≡


zA 0 0 0 0 0
0 zB 0 0 0 0
0 0 zC 0 0 0
0 0 0 zA zB zC

 B̂ ≡


β̂A
β̂B
β̂C

β̂ABC


The error terms in the four equations are of course correlated, but this is
easily addressed by using a cluster-robust covariance estimator - clustering
on the observation number i - that is robust to within-group correlation as
well as heteroskedasticity.

The researcher can then examine potential failures of orthogonality
conditions simply by the difference between two estimated βs. Standard
errors and confidence intervals for these comparisons are easily obtained.
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IV/GMM example: AJR (2001)

Acemoglu-Johnson-Robinson (AJR), “The Colonial Origins of Comparative
Development”, AER 2001, http://economics.mit.edu/files/4123.

Research question: What is the impact of good economic institutions on
the level of economic development in countries?

Model: where yi GDP per capita in 1995
yi = βxi + εi xi Measure of quality of institutions

Key endogeneity problem: Reverse causality. Rich countries can afford to
pay for good economic institutions (legal systems, regulation, etc.); poor
countries cannot. E (xiεi) > 0 and β̂OLS is biased upwards because

development ⇒ good institutions

as opposed to (and in addition to?)

good institutions ⇒ development

as in model. 27 / 47



IV/GMM example: AJR (2001)

How does IV/GMM help us solve the reverse causality problem?

Model: where yi GDP per capita in 1995
yi = βxi + εi xi Measure of quality of institutions

AJR solution: IV, where the excluded instrument zi is:

logemi Mortality rates of European colonial settlers (log death rate)

AJR argument: European colonial powers either (1) set up ‘little Europes’,
complete with European settlers, laws, business codes, etc.; or (2) exploit
the colony by extracting raw materials etc. and don’t build good
institutions. If the colony is a dangerous place for Europeans because of
diseases (malaria, yellow fever, etc.), the colonial power would follow
strategy (2), otherwise it follows (1).

Low settler death rates = colony attractive, build institutions. High death
rates = colony not attractive, exploit. After colonial power leaves, any
institutions created are still there, and so today E (logemixi) < 0.
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IV/GMM example: AJR (2001)

Model: where yi GDP per capita in 1995
yi = βxi + εi xi Measure of quality of institutions

Main AJR instrument:

logemi Mortality rates of European colonial settlers (log death rate)

This instrument got all the attention, but in fact AJR proposed using a
number of other instruments. Here we focus on two others:

euro1900i percentage of the population in 1900 of European descent

democ1i measure of democracy in the first year of independence

And the question is, do these instruments all identify the same causal
effect β of institutions on economic development?
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Estimates of the AJR model with different instruments:
Coefficient or diff. in coefs Point estimate Standard error 95% CI
OLS (for reference) 0.456 (0.061) [0.034, 0.574]

β̂ABC (all 3 instruments) 0.777 (0.087) [0.606, 0.948]
J = 3.20 (p = 0.20)
β̂A (IV is logem4) 0.905 (0.219) [0.475, 01.335]
β̂B (IV is euro1900) 0.920 (0.159) [0.609, 1.231]
β̂C (IV is democ1) 0.383 (0.188) [0.015, 0.752]
β̂ABC - β̂A (p = 0.47) -0.128 (0.176) [-0.473, 0.216]
β̂ABC - β̂B (p = 0.24) -0.143 (0.121) [-0.380, 0.094]
β̂ABC - β̂C (p = 0.06) 0.393 (0.209) [-0.016, 0.803]
β̂A - β̂B (p = 0.95) 0.015 (0.219) [-0.444, 0.414]
β̂A - β̂C (p = 0.13) 0.522 (0.344) [-0.153, 1.197]
β̂B - β̂C (p = 0.08) 0.536 (0.295) [-0.042, 1.115]
H0 : β̂A = β̂B and β̂A=β̂C
χ2(2) = 3.33 (p = 0.19)

Notes:
p-values in parentheses for the differences in estimated β̂s are tests of the null
hypothesis that the difference is zero. Test statistics are robust to heteroskedasticity.
Estimations include a constant and a control for geography.
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IV/GMM example: Summary

The standard NHMT approach would be to look at the J statistic
using all 3 instruments, conclude all is probably OK (J = 3.2,
p = 0.20), and move on.
But if we express the tests of orthogonality conditions in the metric of
β, it’s very clear what is going on.
logem4 and euro1990 are identifying virtually the same β: β̂ ≈ 0.9.
democ1 is identifying a much lower β, lower even than the OLS
estimate: β̂ ≈ 0.4.
But these are not very precise estimates: the standard error for the
differences between the estimated β̂s is 0.2-0.3.
In short, we have some weak evidence that one of the instruments is
identifying an effect that is different from the others, but nothing that
sheds doubt on the overall results.
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How to do this in Stata?

Simple: use the gmm command.
gmm does multiple-equation GMMM.
Each equation gets its own set of instruments (exogenous variables,
orthogonality conditions).
Just repeat the equation of interest as many times as desired, each
time with a different instrument or set of instruments.
If you want to engage in NHMT, then test for the equality of the
coefficient(s) on the endogenous regressor(s).
But much more informative - use lincom and look at the confidence
intervals for the differences between the estimated coefficients.

But before we do that, let’s review how Stata reports Hausman tests and J
tests of overidentification.
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IV estimation, just identified, homoskedasticity assumed

This is estimation A: a single instrument (logem).

. ivregress 2sls logpgp95 lat_abst (avexpr=logem4)

Instrumental-variables 2SLS regression Number of obs = 59
Wald chi2(2) = 33.10
Prob > chi2 = 0.0000
R-squared = 0.1839
Root MSE = .89468

------------------------------------------------------------------------------
logpgp95 | Coefficient Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
avexpr | .905059 .1995468 4.54 0.000 .5139545 1.296164

lat_abst | -.5598326 1.191943 -0.47 0.639 -2.895999 1.776333
_cons | 2.236234 1.169736 1.91 0.056 -.0564057 4.528874

------------------------------------------------------------------------------
Endogenous: avexpr
Exogenous: lat_abst logem4

est store H_A
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IV estimation, overidentified, homoskedasticity assumed

This is estimation B: two instruments (logem and democ1).

. ivregress 2sls logpgp95 lat_abst (avexpr=logem4 democ1)

Instrumental-variables 2SLS regression Number of obs = 59
Wald chi2(2) = 44.31
Prob > chi2 = 0.0000
R-squared = 0.4661
Root MSE = .72365

------------------------------------------------------------------------------
logpgp95 | Coefficient Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
avexpr | .6924884 .1380628 5.02 0.000 .4218902 .9630865

lat_abst | .3004907 .9027615 0.33 0.739 -1.468889 2.069871
_cons | 3.465063 .8133885 4.26 0.000 1.870851 5.059275

------------------------------------------------------------------------------
Endogenous: avexpr
Exogenous: lat_abst logem4 democ1

. est store H_AB
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Hausman and J, homoskedasticity assumed

J and H are identical. But the Hausman output is much more informative!
. estat overid

Tests of overidentifying restrictions:

Sargan (score) chi2(1) = 6.46585 (p = 0.0110)

. hausman H_A H_AB, sigmamore

---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| H_A H_AB Difference Std. err.

-------------+----------------------------------------------------------------
avexpr | .905059 .6924884 .2125707 .083597

lat_abst | -.5598326 .3004907 -.8603233 .3383365
------------------------------------------------------------------------------

b = Consistent under H0 and Ha; obtained from ivregress.
B = Inconsistent under Ha, efficient under H0; obtained from ivregress.

Test of H0: Difference in coefficients not systematic

chi2(1) = (b-B)´[(V_b-V_B)^(-1)](b-B)
= 6.47

Prob > chi2 = 0.0110
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Hausman and J, homoskedasticity assumed

In fact, the H test is simply a Wald test of whether the difference between
the A and AB coefficients on avexpr is zero:
. hausman H_A H_AB, sigmamore

---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| H_A H_AB Difference Std. err.

-------------+----------------------------------------------------------------
avexpr | .905059 .6924884 .2125707 .083597

lat_abst | -.5598326 .3004907 -.8603233 .3383365
------------------------------------------------------------------------------

b = Consistent under H0 and Ha; obtained from ivregress.
B = Inconsistent under Ha, efficient under H0; obtained from ivregress.

Test of H0: Difference in coefficients not systematic

chi2(1) = (b-B)´[(V_b-V_B)^(-1)](b-B)
= 6.47

Prob > chi2 = 0.0110

. di (.2125707 / .083597)^2
6.465847
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Not equivalent when degrees of freedom are different!

In this specification, H will always have one degree of freedom because we
are always basing the test on the contrast between estimates of the
coefficient on the single endogenous regressor avexpr.

But D or J will be based on the degree of overidentification. With 3
instruments instead of 2, J will have 2 degrees of freedom, not one. If we
reject, then why? Is there a single instrument that’s the culprit?
. estat overid

Tests of overidentifying restrictions:

Sargan (score) chi2(2) = 6.74023 (p = 0.0344)

. hausman H_A H_AB, sigmamore

Test of H0: Difference in coefficients not systematic

chi2(1) = (b-B)´[(V_b-V_B)^(-1)](b-B)
= 1.17

Prob > chi2 = 0.2786
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How to test using GMM

Estimating equation is always the same; what differs is the choice of
instruments.

Below we set up eq0 to use all 3 instruments, and then 3 different
equations, each of which uses one of the 3 instruments on its own.

The onestep option combined with the unadjusted weighting matrix
gives us the same estimates as IV with a standard heteroskedastic-robust
covariance matrix.
gmm ///
(eq0: logpgp95 - xb0: avexpr lat_abst _cons) ///
(eq1: logpgp95 - xb1: avexpr lat_abst _cons) ///
(eq2: logpgp95 - xb2: avexpr lat_abst _cons) ///
(eq3: logpgp95 - xb3: avexpr lat_abst _cons), ///
instruments(eq0: lat_abst logem4 euro1900 democ1) ///
instruments(eq1: lat_abst logem4) ///
instruments(eq2: lat_abst euro1900) ///
instruments(eq3: lat_abst democ1) ///
onestep winitial(unadjusted, indep)
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------------------------------------------------------------------------------
| Robust
| Coefficient std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
xb0 |

avexpr | .7767552 .0871493 8.91 0.000 .6059457 .9475648
lat_abst | -.0405572 .6293583 -0.06 0.949 -1.274077 1.192962

_cons | 2.977933 .5769272 5.16 0.000 1.847176 4.108689
-------------+----------------------------------------------------------------
xb1 |

avexpr | .905059 .2194348 4.12 0.000 .4749748 1.335143
lat_abst | -.5598326 1.068555 -0.52 0.600 -2.654163 1.534498

_cons | 2.236234 1.330312 1.68 0.093 -.3711299 4.843598
-------------+----------------------------------------------------------------
xb2 |

avexpr | .9197618 .1586769 5.80 0.000 .6087608 1.230763
lat_abst | -.619338 .9130987 -0.68 0.498 -2.408979 1.170302

_cons | 2.151241 .9801403 2.19 0.028 .2302009 4.07228
-------------+----------------------------------------------------------------
xb3 |

avexpr | .38327 .1879089 2.04 0.041 .0149754 .7515646
lat_abst | 1.55197 .9209816 1.69 0.092 -.2531212 3.35706

_cons | 5.252592 1.085239 4.84 0.000 3.125562 7.379622
------------------------------------------------------------------------------
Instruments for equation eq0: lat_abst logem4 euro1900 democ1 _cons
Instruments for equation eq1: lat_abst logem4 _cons
Instruments for equation eq2: lat_abst euro1900 _cons
Instruments for equation eq3: lat_abst democ1 _cons
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And we’re ready to go!

The gmm output has everything we need.

The estimated coefficients are all display with their standard errors and
confidence intervals,

To do traditional (uninformative) NHMT, use test to test the equality of
coefficients across equations. For example, we can test whether the
coefficients obtained by using the instruments individually are equal:
. test [xb0=xb1=xb2]: avexpr

( 1) [xb0]avexpr - [xb1]avexpr = 0
( 2) [xb0]avexpr - [xb2]avexpr = 0

chi2( 2) = 2.03
Prob > chi2 = 0.3621

This is essentially the same test as a standard J test of overidentifying
restrictions (the J statistic that is robust to heteroskedasticity is 3.20 -
very similar).
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But don’t do NHMT - report CIs instead!

Much more informative is to report confidence intervals using lincom. For
example:
. lincom [xb0]avexp - [xb1]avexp

( 1) [xb0]avexpr - [xb1]avexpr = 0

------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
(1) | -.1283038 .1759162 -0.73 0.466 -.4730933 .2164857

------------------------------------------------------------------------------

. lincom [xb0]avexp - [xb2]avexp

( 1) [xb0]avexpr - [xb2]avexpr = 0

------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
(1) | -.1430065 .1208765 -1.18 0.237 -.3799201 .093907

------------------------------------------------------------------------------
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Open questions

Worth going through the trouble of estimating the overidentified version
using efficient GMM? (Fiddly to set up.)

Worth a special program that does this automatically and reports output
that looks like this?
. overidstack
------------------------------------------------------------------------------

| Robust
logpgp95 | Coefficient std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
avexpr | .7767552 .0871493 8.91 0.000 .6059457 .9475648

avexpr_1 | .905059 .2194348 4.12 0.000 .4749748 1.335143
avexpr_2 | .9197618 .1586769 5.80 0.000 .6087608 1.230763
avexpr_3 | .38327 .1879089 2.04 0.041 .0149754 .7515646

------------------------------------------------------------------------------

Test of overidentifying restrictions:
( 1) avexpr_1 - avexpr_2 = 0
( 2) avexpr_1 - avexpr_3 = 0

chi2( 2) = 3.33
Prob > chi2 = 0.1892
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Conclusions

The traditional NHMT approach to testing orthogonality conditions suffers
from the same drawbacks as the traditional NHST approach to estimation
of parameters in general.

When examining potential failures of orthogonality conditions, researchers
should go beyond the traditional question “Is there evidence that the
orthogonality conditions are violated?” and should ask “By how much are
they violated?” and “If there is evidence of any violation, does it matter in
practical terms?”

The natural framework for answering these questions is the Hausman test,
because it allows the research examine these issues in the natural metric of
the parameter estimates themselves and how precisely they are estimated.
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Conclusions (continued)

But established tests for orthogonality conditions in linear IV/GMM
models are not easily interpreted beyond a yes-or-no rejection of the null
hypothesis about the orthogonality of the full set (J) or a subset (D) of
instruments.

I propose a simple approach that allows interpretations of these tests in
the metric of the parameters: estimate the different specifications
(different combinations of instruments) as a system and construct tests,
differences, standard errors and confidence intervals in the standard way.

The tests constructed using this approach behave in the same way as
standard GMM J and D tests, but have this additional feature of easy
interpretation that allow us to answer the questions “By how much are the
orthogonality conditions violated?” and “If there is evidence of any
violation, does it matter in practical terms?”
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Thank you!

Null Hypothesis Misspecification Testing
(NHMT) Revisited:

How (Not) to Test Orthogonality Conditions

Mark E Schaffer (Heriot-Watt University, Edinburgh)

Swiss Stata Conference 2025
University of Bern, Switzerland, 21 November 2025
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