Causal detailed decompositions

Philipp Ketz, Blaise Melly and Miguel Salema

Paris School of Economics and University of Bern

2025 Swiss Stata Conference

Motivation

- Decomposition methods are widely used in social sciences:
 - ▶ Wage gaps, test score gaps, employment gaps, etc.
- Aggregate decompositions:
 - Existing methods (e.g. Oaxaca-Blinder, distributional methods) have a clear causal interpretation under ignorability and common support.
- Beyond aggregate decompositions:
 - Researchers often want to understand the contribution of each variable or group of variables to the explained component.
- Problem:
 - Detailed decompositions are treated as accounting exercises, without a clear causal interpretation.

What we do

- Show that naive detailed Oaxaca–Blinder decompositions are not causally interpretable.
- Provide a detailed decomposition with a transparent causal meaning.
- Key ingredients:
 - ▶ A triangular (recursive) structure for the covariates.
 - A sequential independence assumption.
- Develop a general nonparametric, distributional framework that applies to linear, nonlinear and quantile decompositions.
- ► Show that the method can be implemented with standard commands for aggregate decompositions.

Running example: black-white test score gap

- Outcome: standardized test scores of children.
- ▶ Groups: black (G = b) and white (G = w).
- Key covariates:
 - Parental income I
 - School quality S
- Typical questions:
 - How much of the test score gap is explained by income and school quality?
 - ▶ Within the explained component, how much is due to income and how much to schooling?

Aggregate Oaxaca-Blinder decomposition

- ▶ Two groups $G \in \{0,1\}$, outcome Y, covariates X.
- Separate linear models:

$$E[Y \mid X, G = g] = X'\beta_g.$$

► Aggregate Oaxaca—Blinder decomposition:

$$\bar{Y}_1 - \bar{Y}_0 = \underbrace{\left(\bar{X}_1'\hat{\beta}_1 - \bar{X}_1'\hat{\beta}_0\right)}_{\text{unexplained / structure}} + \underbrace{\left(\bar{X}_1'\hat{\beta}_0 - \bar{X}_0'\hat{\beta}_0\right)}_{\text{explained / endowments}}.$$

- Under linearity and ignorability:
 - ► The unexplained component is a causal group effect for group

 1. It is called the average treatment effect on the treated when

 G is a treatment.
 - ► The explained component is the causal effect of changing covariate distributions from group 0 to group 1.

Naive detailed decomposition for characteristics

▶ Suppose X = (I, S). A common practice is:

$$(\bar{X}_1 - \bar{X}_0)'\hat{\beta}_0 = (\bar{S}_1 - \bar{S}_0)\hat{\beta}_0^S + (\bar{I}_1 - \bar{I}_0)\hat{\beta}_0^I.$$

- ▶ Interpreted as contribution of *S* and *I* to the explained component.
- ► Problems:
 - No clear counterfactual experiment: changing S without adjusting I is not well defined when they are causally linked.
 - ▶ If *S* is a causal consequence of *I*, part of the effect of *I* is mechanically allocated to *S*.
- Conclusion:
 - Naive detailed Oaxaca—Blinder is an accounting device.

Illustrative linear example

▶ Consider the following system in each group $g \in \{0, 1\}$:

$$S_g = \gamma_g^C + \gamma_g^I I_g + U_g^S,$$
$$I_g = \delta_g^C + \delta_g^S S_g + U_g^I.$$

Outcome equation in group g:

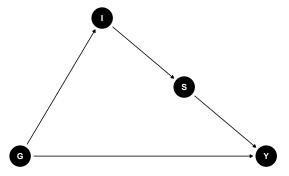
$$Y_g = \beta_g^C + \beta_g^S S_g + \beta_g^I I_g + U_g^Y.$$

Even in this simple system:

$$\begin{split} & \left(\bar{S}_{1} - \bar{S}_{0} \right) \hat{\beta}_{0}^{S} \underset{p}{\rightarrow} = \left(\frac{\gamma_{1}^{S} + \gamma_{1}^{I} \delta_{1}^{S}}{1 - \gamma_{1}^{I} \delta_{1}^{S}} - \frac{\gamma_{0}^{S} + \gamma_{0}^{I} \delta_{0}^{S}}{1 - \gamma_{0}^{I} \delta_{0}^{S}} \right) \beta_{0}^{S}, \\ & \left(\bar{I}_{1} - \bar{I}_{0} \right) \hat{\beta}_{0}^{I} \underset{p}{\rightarrow} = \left(\frac{\delta_{1}^{C} + \delta_{1}^{S} \gamma_{1}^{C}}{1 - \delta_{1}^{S} \gamma_{1}^{I}} - \frac{\delta_{0}^{C} + \delta_{0}^{S} \gamma_{0}^{C}}{1 - \delta_{0}^{S} \gamma_{0}^{I}} \right) \beta_{0}^{I}. \end{split}$$

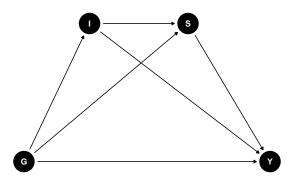
No causal interpretation

- ▶ Unless *I* and *S* are uncorrelated, both naive detailed decomposition terms depend on the whole system.
- ► Even in this example, the detailed decomposition will attribute a part of the difference to *S*:



Identification by triangularity

- Without further assumptions the causal detailed decomposition is not identified.
- ► In this paper, we impose a causal ordering of the covariates (triangular structure):



Linear model with triangularity

▶ With this model, the causal effect of exogenously changing *I* is

$$\left(\delta_1^C - \delta_0^C\right) \left(\beta_0^W + \gamma_0^W \beta_0^V\right)$$

and the effect of changing S is

$$\left(\gamma_1^C - \gamma_0^C + \left(\gamma_1^W - \gamma_0^W\right)\delta_1^C\right)\beta_0^V.$$

- Note that the sum of these two components is equal to the total explained difference.
- ► This decomposition can be implemented by incorporating the regressors sequentially: first only *I*, then *I* and *S*.
- This sequential procedure is often used in practice without justification.

General nonparametric framework

- ▶ Groups: $G \in \mathcal{G} = \{b, w\}$ (black and white).
- Covariates:
 - Parental income 1.
 - ► Schooling *S*.
- Potential outcomes:

$$Y(g, i, s)$$
 is the outcome if $G = g, I = i, S = s$.

- ► Potential covariates:
 - ightharpoonup I(g,s) is potential income if G=g and S=s.
 - ▶ S(g,i) is potential schooling if G = g and I = i.

Triangularity and building blocks

$$I(g,s) = I(g) \quad \forall g \in \mathcal{G}.$$

- ▶ Parental income is determined before schooling.
- By the observation rule:

$$I=I(G),\quad S=S(G,I(G)),\quad Y=Y(G,I(G),S(G,I(G))).$$

Building block counterfactuals:

$$Y(g, I(g'), S(g'', I(g')))$$

where $g, g', g'' \in \mathcal{G}$.

► These objects allow us to decompose the gap and attribute parts of it to each covariate.

Sequential independence assumption

For any g, g', g'', i, s, we assume:

- 1. $Y(g, i, s), S(g'', i), I(g') \perp G$.
- 2. $Y(g, i, s), S(g'', i) \perp I \mid G$.
- 3. $Y(g, i, s) \perp S \mid G, I$.
- ► Interpretation:
 - Potential income is independent of group, once we fix the group in the potential notation.
 - Conditional on group and income, potential schooling does not depend on the realized value of income beyond that.
 - Conditional on group and covariates, potential outcomes are independent of the realized covariates.
- ▶ This is a sequential version of unconfoundedness along the causal chain $G \rightarrow I \rightarrow S \rightarrow Y$.

Identification: key result

Proposition

Under triangularity, sequential independence and common support,

$$F_{Y(g,I(g'),S(g'',I(g')))}(y) = F_{Y\langle g,g',g''\rangle}(y)$$

where $F_{Y\langle g,g',g''\rangle}(y)$

$$\iint F_Y(y \mid G = g, I = i, S = s) dF_S(s \mid G = g'', I = i) dF_I(i \mid G = g').$$

- Right-hand side is expressed entirely in terms of observable conditional distributions.
- This gives an identified representation of the cross-world counterfactuals Y(g, I(g'), S(g'', I(g'))).

From building blocks to decompositions

Total gap:

$$F_{Y\langle b,b,b\rangle}(y) - F_{Y\langle w,w,w\rangle}(y).$$

- ▶ Decompose into:
 - \triangleright Outcome structure effect (change g holding covariates at w).
 - ► Endowment effect (change covariates from *w* to *b* holding structure fixed).
- Further decompose the endowment effect:
 - Effect of changing income:

$$F_{Y\langle b,b,b\rangle}(y) - F_{Y\langle b,w,b\rangle}(y).$$

► Effect of changing schooling:

$$F_{Y\langle b,w,b\rangle}(y) - F_{Y\langle b,w,w\rangle}(y).$$

► Each term has a clear causal interpretation as a change in one structural equation.

Estimation and inference

- 1. Plug-in estimation
 - Parametric or nonparametric estimation of conditional distributions (e.g. quantile regression, distribution regression).
 - Or reweighting methods.
- 2. Sequential aggregate decompositions using an increasing set of regressors.
 - In Stata, the detailed decomposition can be implemented by repeatedly calling the command cdeco from the counterfactual package.
- ► Inference:
 - Functional central limit theorems.
 - Bootstrap; all steps of the procedure must be bootstrapped jointly.

Relation to mediation analysis

- Closely related to the mediation literature:
 - Daniel et al. (2015), Zhou (2022), among others.
- ▶ They study causal pathways $G \rightarrow I \rightarrow S \rightarrow Y$ and identify direct and indirect effects.
- Our angle:
 - Provide a link between mediation analysis and the decomposition literature.
 - Use similar potential outcome structures and assumptions.
 - Provide results for the whole distributions, rather than on average mediation effects.

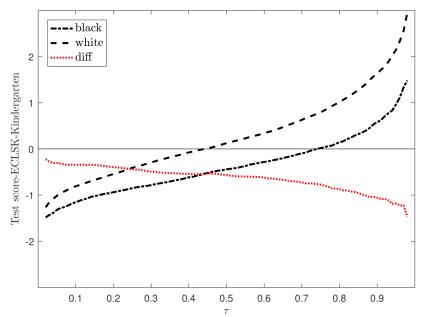
Application: black-white test score gap

- Standard dataset used by Fryer and Levitt (2004): early Childhood Longitudinal Study kindergarten cohort (ECLSK) -1998/99.
- Outcome: Item Response Theory (IRT) test scores in math and reading.
- Decomposition:
 - Aggregate gap in the distribution of test scores.
 - Outcome structure vs characteristics.
 - Within characteristics: four groups of variables.
- ▶ Implementation: quantile regression.

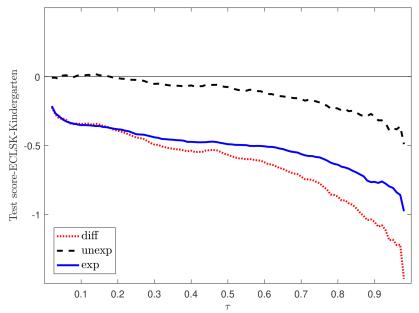
Covariates

- Socioeconomic variables: SES, WIC (Women, Infant, and Children — Food and Nutrition Service), WIC for mother
- 2. Variables determined at birth: sex, birth weight, indicators for teenage mother and mother above 30 at first birth
- Variables measuring the home environment: number of children books (and its square)
- 4. School quality variables: school fixed effects;

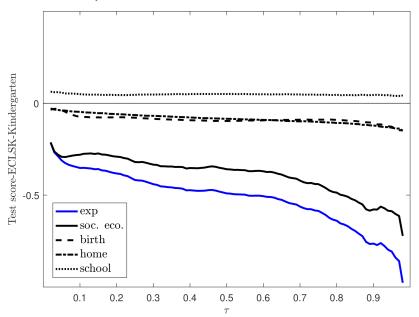
Total gap in the math score



Aggregate decomposition



Detailed decomposition



Conclusion and limitations

- Aggregate decompositions have a clear causal interpretation under standard assumptions.
- Detailed decompositions require additional structure.
- Our approach:
 - Uses a triangular structure and sequential independence to identify causal contributions of individual covariates.
 - Links sequential decompositions used in practice to an explicit structural model.
- Limitations:
 - ▶ Requires a credible causal ordering of covariates.
 - Sequential independence is strong and may require rich conditioning sets.