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Motivation

▶ Decomposition methods are widely used in social sciences:

▶ Wage gaps, test score gaps, employment gaps, etc.

▶ Aggregate decompositions:

▶ Existing methods (e.g. Oaxaca-Blinder, distributional

methods) have a clear causal interpretation under ignorability

and common support.

▶ Beyond aggregate decompositions:

▶ Researchers often want to understand the contribution of each

variable or group of variables to the explained component.

▶ Problem:

▶ Detailed decompositions are treated as accounting exercises,

without a clear causal interpretation.



What we do

▶ Show that naive detailed Oaxaca–Blinder decompositions are

not causally interpretable.

▶ Provide a detailed decomposition with a transparent causal

meaning.

▶ Key ingredients:

▶ A triangular (recursive) structure for the covariates.

▶ A sequential independence assumption.

▶ Develop a general nonparametric, distributional framework

that applies to linear, nonlinear and quantile decompositions.

▶ Show that the method can be implemented with standard

commands for aggregate decompositions.



Running example: black–white test score gap

▶ Outcome: standardized test scores of children.

▶ Groups: black (G = b) and white (G = w).

▶ Key covariates:

▶ Parental income I

▶ School quality S

▶ Typical questions:

▶ How much of the test score gap is explained by income and

school quality?

▶ Within the explained component, how much is due to income

and how much to schooling?



Aggregate Oaxaca–Blinder decomposition

▶ Two groups G ∈ {0, 1}, outcome Y , covariates X .

▶ Separate linear models:

E [Y | X ,G = g ] = X ′βg .

▶ Aggregate Oaxaca–Blinder decomposition:

Ȳ1 − Ȳ0 =
(
X̄ ′
1β̂1 − X̄ ′

1β̂0
)︸ ︷︷ ︸

unexplained / structure

+
(
X̄ ′
1β̂0 − X̄ ′

0β̂0
)︸ ︷︷ ︸

explained / endowments

.

▶ Under linearity and ignorability:

▶ The unexplained component is a causal group effect for group

1. It is called the average treatment effect on the treated when

G is a treatment.

▶ The explained component is the causal effect of changing

covariate distributions from group 0 to group 1.



Naive detailed decomposition for characteristics

▶ Suppose X = (I , S). A common practice is:(
X̄1 − X̄0

)′
β̂0 = (S̄1 − S̄0)β̂

S
0 + (Ī1 − Ī0)β̂

I
0.

▶ Interpreted as contribution of S and I to the explained

component.

▶ Problems:

▶ No clear counterfactual experiment: changing S without

adjusting I is not well defined when they are causally linked.

▶ If S is a causal consequence of I , part of the effect of I is

mechanically allocated to S .

▶ Conclusion:

▶ Naive detailed Oaxaca–Blinder is an accounting device.



Illustrative linear example

▶ Consider the following system in each group g ∈ {0, 1}:

Sg = γCg + γIg Ig + US
g ,

Ig = δCg + δSg Sg + U I
g .

▶ Outcome equation in group g :

Yg = βC
g + βS

g Sg + βI
g Ig + UY

g .

▶ Even in this simple system:

(
S̄1 − S̄0

)
β̂S
0 →

p
=

(
γS1 + γI1δ

S
1

1− γI1δ
S
1

− γS0 + γI0δ
S
0

1− γI0δ
S
0

)
βS
0 ,

(
Ī1 − Ī0

)
β̂I
0 →p =

(
δC1 + δS1 γ

C
1

1− δS1 γ
I
1

− δC0 + δS0 γ
C
0

1− δS0 γ
I
0

)
βI
0.



No causal interpretation

▶ Unless I and S are uncorrelated, both naive detailed

decomposition terms depend on the whole system.

▶ Even in this example, the detailed decomposition will attribute

a part of the difference to S :

G

I

S

Y



Identification by triangularity

▶ Without further assumptions the causal detailed

decomposition is not identified.

▶ In this paper, we impose a causal ordering of the covariates

(triangular structure):

G

I S

Y



Linear model with triangularity

▶ With this model, the causal effect of exogenously changing I is(
δC1 − δC0

)(
βW
0 + γW0 βV

0

)
and the effect of changing S is(

γC1 − γC0 +
(
γW1 − γW0

)
δC1

)
βV
0 .

▶ Note that the sum of these two components is equal to the

total explained difference.

▶ This decomposition can be implemented by incorporating the

regressors sequentially: first only I , then I and S .

▶ This sequential procedure is often used in practice without

justification.



General nonparametric framework

▶ Groups: G ∈ G = {b,w} (black and white).

▶ Covariates:

▶ Parental income I .

▶ Schooling S .

▶ Potential outcomes:

Y (g , i , s) is the outcome if G = g , I = i ,S = s.

▶ Potential covariates:

▶ I (g , s) is potential income if G = g and S = s.

▶ S(g , i) is potential schooling if G = g and I = i .



Triangularity and building blocks

I (g , s) = I (g) ∀g ∈ G.

▶ Parental income is determined before schooling.

▶ By the observation rule:

I = I (G ), S = S(G , I (G )), Y = Y (G , I (G ), S(G , I (G ))).

▶ Building block counterfactuals:

Y (g , I (g ′), S(g ′′, I (g ′)))

where g , g ′, g ′′ ∈ G.
▶ These objects allow us to decompose the gap and attribute

parts of it to each covariate.



Sequential independence assumption

For any g , g ′, g ′′, i , s, we assume:

1. Y (g , i , s), S(g ′′, i), I (g ′) ⊥ G .

2. Y (g , i , s), S(g ′′, i) ⊥ I | G .

3. Y (g , i , s) ⊥ S | G , I .

▶ Interpretation:

▶ Potential income is independent of group, once we fix the

group in the potential notation.

▶ Conditional on group and income, potential schooling does not

depend on the realized value of income beyond that.

▶ Conditional on group and covariates, potential outcomes are

independent of the realized covariates.

▶ This is a sequential version of unconfoundedness along the

causal chain G → I → S → Y .



Identification: key result

Proposition

Under triangularity, sequential independence and common support,

FY (g ,I (g ′),S(g ′′,I (g ′)))(y) = FY ⟨g ,g ′,g ′′⟩(y)

where FY ⟨g ,g ′,g ′′⟩(y)∫ ∫
FY (y | G = g , I = i ,S = s) dFS(s | G = g ′′, I = i) dFI (i | G = g ′).

▶ Right-hand side is expressed entirely in terms of observable

conditional distributions.

▶ This gives an identified representation of the cross-world

counterfactuals Y (g , I (g ′), S(g ′′, I (g ′))).



From building blocks to decompositions

▶ Total gap:

FY ⟨b,b,b⟩(y)− FY ⟨w ,w ,w⟩(y).

▶ Decompose into:

▶ Outcome structure effect (change g holding covariates at w).

▶ Endowment effect (change covariates from w to b holding

structure fixed).

▶ Further decompose the endowment effect:

▶ Effect of changing income:

FY ⟨b,b,b⟩(y)− FY ⟨b,w ,b⟩(y).

▶ Effect of changing schooling:

FY ⟨b,w ,b⟩(y)− FY ⟨b,w ,w⟩(y).

▶ Each term has a clear causal interpretation as a change in one

structural equation.



Estimation and inference

1. Plug-in estimation

▶ Parametric or nonparametric estimation of conditional

distributions (e.g. quantile regression, distribution regression).

▶ Or reweighting methods.

2. Sequential aggregate decompositions using an increasing set

of regressors.

▶ In Stata, the detailed decomposition can be implemented by

repeatedly calling the command cdeco from the

counterfactual package.

▶ Inference:

▶ Functional central limit theorems.

▶ Bootstrap; all steps of the procedure must be bootstrapped

jointly.



Relation to mediation analysis

▶ Closely related to the mediation literature:

▶ Daniel et al. (2015), Zhou (2022), among others.

▶ They study causal pathways G → I → S → Y and identify

direct and indirect effects.

▶ Our angle:

▶ Provide a link between mediation analysis and the

decomposition literature.

▶ Use similar potential outcome structures and assumptions.

▶ Provide results for the whole distributions, rather than on

average mediation effects.



Application: black–white test score gap

▶ Standard dataset used by Fryer and Levitt (2004): early

Childhood Longitudinal Study kindergarten cohort (ECLSK) -

1998/99.

▶ Outcome: Item Response Theory (IRT) test scores in math

and reading.

▶ Decomposition:

▶ Aggregate gap in the distribution of test scores.

▶ Outcome structure vs characteristics.

▶ Within characteristics: four groups of variables.

▶ Implementation: quantile regression.



Covariates

1. Socioeconomic variables: SES, WIC (Women, Infant, and

Children — Food and Nutrition Service), WIC for mother

2. Variables determined at birth: sex, birth weight, indicators for

teenage mother and mother above 30 at first birth

3. Variables measuring the home environment: number of

children books (and its square)

4. School quality variables: school fixed effects¡



Total gap in the math score



Aggregate decomposition



Detailed decomposition



Conclusion and limitations

▶ Aggregate decompositions have a clear causal interpretation

under standard assumptions.

▶ Detailed decompositions require additional structure.

▶ Our approach:

▶ Uses a triangular structure and sequential independence to

identify causal contributions of individual covariates.

▶ Links sequential decompositions used in practice to an explicit

structural model.

▶ Limitations:

▶ Requires a credible causal ordering of covariates.

▶ Sequential independence is strong and may require rich

conditioning sets.


