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Introduction

The Skellam distribution models the difference between two Poisson
variables with possibly different means. It remains valid even if the vari-
ables share an additive component, as this cancels out in the difference.
It is named after British statistician and ecologist John Gordon Skellam
(1914-1979).
It is a generalization of Irwin distribution (see Irwin, 1937) that models
the difference between two independent Poisson random variables that
share the same mean.
Several disciplines, including astronomy, business, and sports, use it to
represent the difference between two counts
A Skellam regression uses Maximum Likelihood to estimate how the
conditional means of the underlying poisson processes are related to a
set of covariates.
In this presentation we show how to write the ML problem and get the
gradient and Hessian for numerical optimization. We then present a Stata
command we coded.
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Some examples in the literature

The Skellam distribution is often used to model the number of points that
separate two teams in sports such as hockey and soccer.

Kendall (1951) and Dobbie (1961) show that it can also be used in the
problem of taxis and customers coming to a waiting area in different
Poisson flows (i.e. with different rates). The number of taxis waiting is the
(integer) variable of interest. This number can be positive if taxis are
waiting, zero if neither taxis nor customers are waiting, or negative if
customers are waiting.

More recently, Liu and Pelechrinis (2021) look at the case of shared trans-
portation (cars, bikes, etc.). They use a Skellam regression to predict the
difference in overall demand and supply at a particular bike station over
a certain time period.
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Modified Bessel function of the first kind

The Modified Bessel Function of the First Kind arises in many areas of
mathematics and physics. It is denoted by t Ik(x). We are only interested
in the case where k ∈ Z and x ∈ R+here. It is defined as:

Ik(x) =
∞

∑
m=0

1
m!Γ(m+k +1)

(x
2

)2m+k
,

where Γ(·) is the Gamma function
(
Γ(z) =

∫
∞

0 tz−1e−tdt
)
.

If the values of k are integers (as in our setup), I−k(x) = Ik(x) (see
Abramowitz and Stegun 1972, p. 375, 9.6.6). Ik(·) can thus be replaced by
I|k|(·) in the above formula.
Furthermore (see Abramowitz and Stegun 1972, p.376, 9.6.26), for k ∈ Z,

I ′k(z) =
d
dz Ik(z) =

Ik−1(z)+ Ik+1(z)
2

To the best of our knowledge this function is not available in Stata but
we translated (with permission) the C++ code by Moreau (2011) to Mata
(the syntax is almost identical).
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Modified Bessel function of the first kind
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Skellam distribution

Let Y1 and Y2 be two independent Poisson-distributed random vari-
ables with means µ1 and µ2. Then, Y =Y1−Y2 has a Skellam distribution.
Its probability mass function is given by

Pr{Y = k}= e−(µ1+µ2)

(
µ1
µ2

)k/2
I|k| (2

√
µ1µ2)

where k ∈Z and where Ik(·) is the modified Bessel function of the first kind.
To guarantee positiveness of µ1 and µ2, the probability mass function can
be reparametrized by defining µ1 = exp(λ1) and µ2 = exp(λ2) and can be
re-written as

Pr{Y = k}= e−(eλ1+eλ2)
(

eλ1−λ2
)k/2

I|k|
(

2
√

eλ1+λ2
)

The mean is µ1-µ2, the variance is µ1+µ2, skewness is µ1−µ2
(µ1+µ2)

3/2 and kur-
tosis is 3+ 1

µ1+µ2
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Skellam distribution

Skellam, Bessel
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https://www.desmos.com/calculator/hptcmgo69u
https://www.desmos.com/calculator/5amiwlktgr


Maximum Likelihood estimator

The likelihood function is given by

L (λ1,λ2;k1, . . . ,kn) =
n

∏
i=1

Pr(Yi = ki | λ1,λ2)

=
n

∏
i=1

{
e−(eλ1+eλ2)

(
eλ1−λ2

) ki
2 I|ki |

(
2
√

eλ1+λ2
)}

The maximum likelihood estimates λ̂1 and λ̂2 of the two parameters of the
Skellam distribution are solutions of the maximization problem

max
λ1,λ2∈R

lnL (λ1,λ2;k1, . . . ,kn) = max
λ1,λ2∈R

n

∑
i=1

L(λ1,λ2;ki)

where

L(λ1,λ2;k) =−
(

eλ1 + eλ2
)
+(λ1 −λ2)

k
2 +ln I|k|

(
2
√

eλ1+λ2
)
, k ∈ Z
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Maximum Likelihood estimator

To solve this maximization problem, the gradient and the Hessian, with
respect to λ1 and λ2, of the log-likelihood function, and hence of function
L(λ1,λ2;k), can easily be computed. Since, for k ∈ Z,

I ′k(z) =
d
dz Ik(z) =

Ik−1(z)+ Ik+1(z)
2

(see 9.6.26 page 376 in Abramowitz and Stegun, 1972), we have the fol-
lowing first derivatives for the gradient:

∂

∂λ1
L(λ1,λ2;k) =−eλ1 +

k
2 +

√
eλ1+λ2

2

 I||k|−1|

(
2
√

eλ1+λ2
)
+ I|k|+1

(
2
√

eλ1+λ2
)

I|k|
(

2
√

eλ1+λ2
)


∂

∂λ2
L(λ1,λ2;k) =−eλ2 − k

2 +

√
eλ1+λ2

2

 I||k|−1|

(
2
√

eλ1+λ2
)
+ I|k|+1

(
2
√

eλ1+λ2
)

I|k|
(

2
√

eλ1+λ2
)



9 / 28



Maximum Likelihood estimator

For the Hessian, let’s first calculate the cross derivatives:

∂ 2

∂λ1∂λ2
L(λ1,λ2;k) = ∂ 2

∂λ2∂λ1
L(λ1,λ2;k)

= eλ1+λ2
2 + eλ1+λ2

4

[
I||k|−2|

(
2
√

eλ1+λ2
)
+I|k|+2

(
2
√

eλ1+λ2
)

I|k|
(

2
√

eλ1+λ2
)

]

+
√

eλ1+λ2
4

[
I||k|−1|

(
2
√

eλ1+λ2
)
+I|k|+1

(
2
√

eλ1+λ2
)

I|k|
(

2
√

eλ1+λ2
)

]

×

{
1−

√
eλ1+λ2

[
I||k|−1|

(
2
√

eλ1+λ2
)
+I|k|+1

(
2
√

eλ1+λ2
)

I|k|
(

2
√

eλ1+λ2
)

]}

The second derivatives are given by
∂ 2

∂λ 2
1
L(λ1,λ2;k) =−eλ1 + ∂ 2

∂λ1∂λ2
L(λ1,λ2;k)

∂ 2

∂λ 2
2
L(λ1,λ2;k) =−eλ2 + ∂ 2

∂λ1∂λ2
L(λ1,λ2;k)
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Maximum Likelihood estimator

In the context of Skellam regression, the parameters λ1 and λ2 of the
two independent Poisson distributions are expressed as linear functions of p
covariates X1, . . . ,Xp. That is to say that, for i = 1, . . . ,n,

Pr{Yi = ki}= e−(eλ1i +eλ2i )
(

eλ1i−λ2i
)ki/2

I|ki |

(
2
√

eλ1i+λ2i
)

where λ1i = xT
i β and λ2i = xT

i γ, with xi = (1,xi1, . . . ,xip)
T . We have here

to estimate two (p + 1)-vectors of parameters (β and γ) by solving the
maximization problem

max
β ,γ∈Rp+1

n
∑
i=1

L(β ,γ;ki ,xi )

where, for i = 1, . . . ,n

L(β ,γ;ki ,xi ) =−
(

exT
i β + exT

i γ

)
+
(

xT
i β −xT

i γ

) ki
2 +ln I|ki |

(
2
√

exT
i β+xT

i γ

)
The first and second derivatives presented above have to be modified and
multiplied respectively by xT

i for the gradient and xixT
i for the second

and cross derivatives.
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Stata: Verardi and Vermandele (2024)

robust and cluster() options should be used with caution as the model is non-linear

Note: If only one set of explanatory variables is declared without parenthe-
ses, explanatory variables are assumed to be the same for the two underlying
Poisson equations. If no explanatory variable is declared, only a constant is
considered among regressors (which brings to the unconditional estimation
of rate parameters). See help file for further explanations.
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Simulations

To illustrate how a simple Stata/Mata code can be used to estimate the
parameters of the Skellam distribution, we first generate n = 1000 obser-
vations from a random variable Y defined as the difference (Y1 −Y2) of
two independent Poisson-distributed variables, Y1 ∼ P

(
µ1 = eλ1

)
and

Y2 ∼ P
(
µ2 = eλ2

)
.

To have an idea of the performance of the estimator, we run some Monte
Carlo simulations by simply replicating B=1000 times this setup. We
take λ1 = 1.3 and λ2 = 0.7
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Simulations

In a second setup, we change the data generating process and make λ1 and
λ2 dependent on an explanatory variable X . We use a standard normal
distribution to generate n = 1000 observations xi .

We then generate n = 1000 observations yi1 from a Poisson distribution
with mean eλi1 where λi1 = β0+β1xi = 0+1.3xi , and n = 1000 observations
yi2 from a Poisson distribution with mean eλi2 where λi2 = γ0 + γ1xi =
0+0.7xi .
Finally, we determine the observations yi = yi1 −yi2 for i = 1, . . . ,n.
As before, we run some Monte Carlo simulations by simply replicating
B=1000 times this setup.
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Synthetic data example I
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Synthetic data example I
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Synthetic data example I
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Synthetic data example I

18 / 28



Synthetic data example II
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Synthetic data example II
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Synthetic data example II
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Synthetic data example II
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Synthetic data example II
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Football example

This case study examines how the day of the week a match is played may
affect the dynamics of goal scoring in association football (soccer).

We use information from the English Football Premier League’s from
the season 2007-2008 to the season 2021-2022. All data come from
https://www.footballdata.co.uk.

The dependent variable (dftg) that we calculate corresponds, for each
match, to the difference between the number of goals scored by the home
team (fthg) and the number of goals scored by the visiting team (ftag).

Bet365 odds are incorporated in the regression model and serve as an indi-
rect measure for taking into account the comparative strength of teams
in the game

See Karlis and Ntzoufras (2008) for details on goal modelling in football.

24 / 28



Football example
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