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Introduction

SAR models aimed at explicitly accounts for interactions/spillovers be-
tween cross-sectional units
Ex: Social networks, corporate finance, local public policies

yi = λW.i y +x ′
i β +W.i Xκ + εi

W models interactions between observations (geography, peers, socio-
economic indicators, etc.)
In the social network literature:

Endogenous effects (i ’s outcome depend on j ’s outcomes) Wi .y =∑j wijyj
⇒ λ measures the intensity of interactions between units

Contextual effects (i ’s outcome depend on j ’s characteristics) Wi .X
⇒ κ quantify local spillovers
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Introduction

Due to the endogenous effect Wi .y , OLS cannot generally be used.
If the innovation distribution is known, MLE is the best estimator
If the distribution is unknown, MLE not feasible, while if the distribution
is not correct, MLE is generally inconsistent

⇒ Lee (Ecta, 2004) derives a quasi-ML estimator, based on Normality,
which allows for deviations from the normal distribution.
Liu et al (2010) developed a GMM estimator which may bring a gain
in efficiency compared to QML.
Robinson (2010) develops an adaptive estimator, more efficient than
QML.

We propose two alternative, efficient estimators, derived from the Local
Asymptotic Normality (LAN) theory (Le Cam, 1960):

A flexible parametric estimator
A semiparametric estimator
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Local Asymptotic Normality

The LAN property suggests that, under certain conditions, complex
models behave similarly to simpler Gaussian models in a local sense.
It examines model’s behavior for small perturbations around a true
parameter value.
As the sample size increases, the log-likelihood ratio between the true
parameter and nearby values is normally distributed.
This helps in estimating parameters and testing hypotheses by using
the properties of the normal distribution.
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Important implication of LAN property

An implication of the LAN property is that if one has θ̃ (n), a√
n-consistent estimator of θ , then

θ̂
(n)

= θ̃
(n)

+
1√
n

[
I
(

θ̃
(n))]−1

∆(n)
(

θ̃
(n))

is an asymptotically efficient estimator of θ where ∆(n)(θ) is called the
central sequence for θ (or normalized score function):

∆(n)(θ) =
1√
n

n

∑
i=1

∂ ln fθ (yi)

∂θ

L→ N (0, I(θ))

and Information matrix I(θ) is

I(θ) = E

[(
∂ ln fθ (yi)

∂θ

)(
∂ ln fθ (yi)

∂θ

)T
]
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Efficient SAR model without the normal distribution

Consider now the following linear model with endogenous effects (con-
textual effects may be included). For i = 1, · · · ,n

y (n)
i =

(
x(n)i

)T
β +λ

n

∑
j ̸=i

w (n)
ij y (n)

j + ε
(n)
i ,

Assumptions wrt. the interaction matrix and regressors are identical to
Lee (Ecta, 2004).
However, we relax the normality assumption of the distribution of
ε
(n)
1 , . . . ,ε

(n)
n , but still maintain iid.

We first propose an efficient estimator for any parametric f (satisfying
some regularity conditions) and then relax the parametric assumption
on f .
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Efficient estimation

Assume first f is known and parametric

lnL
(

θ | y (n),W (n),X(n)
)
= ln

∣∣∣det(In −λW (n)
)∣∣∣+ n

∑
i=1

ln fγ

(
e(n)i (θ)

)
The distribution of the error term can be characterized by its quantile
function (useful if density is not explicit)

Qγ : (0,1)→ R : u 7→ Qγ(u) = F−1
γ (u)

Consequently,

fγ(e) =
dFγ(e)

de =
d
de
{

Q−1
γ (e)

}
=

1
Q′

γ

(
Q−1

γ (e)
)

with Q′
γ(u) =

dQγ (u)
du , the log-likelihood function may be written as :

lnL
(

θ | y (n),W (n),X (n)
)
= ln

∣∣∣det(In −λW (n)
)∣∣∣− n

∑
i=1

lnQ′
γ

(
Q−1

γ

(
e(n)i (β ,λ )

))
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Efficient parametric estimation

Recall that we don’t maximize the log-likelihood function!
Instead, we will compute the one-step efficient estimator:

θ̂
(n)

= θ̃
(n)

+
1√
n

[
I
(

θ̃
(n))]−1

∆(n)
(

θ̃
(n))

with ∆(n)(θ) is central sequence (normalized score function)
and I(θ) is the information matrix computed as:

lim
n→∞

E
[
∆(n)(θ)

(
∆(n)(θ)

)′]
,

⇒ We only need a preliminary
√

n− consistent estimator (θ̃
(n)

), and the
FOC and we are mostly done
(only requires additional integrals to compute the Information matrix)
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Efficient parametric estimation

If unsure about the correct parametric distribution, use flexible distri-
butions
We develop the formulas and code for

1 The Tukey g-and-h distribution (non explicit density)
2 The Jones and Pewsey SAS distribution (numerical convergence prob-

lems by classical ML)
But many others could be considered
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Tukey g-and-h error term distribution

Transformation of the normal distribution, introduced by Tukey (1977),
to accommodate skewness and heavy tails.
Let Z be a random variable with standard normal distribution N(0,1).

X = ξ +στg ,h(Z )

where τg ,h(z) = 1
g (exp(gz)−1)exp

(
hz2/2

)
ξ ∈ R,σ ∈ R+

0 ,
g ∈ R controls the skewness
For g = 0, τ0,h(z) = limg→0 τg ,h(z) = z exp

(
hz2/2

))
h ∈ [0,0.25) controls the tail heaviness.
h < 0.25 to guarantee 4th moment exists (Martinez & Iglewicz, 1984)
Implicitly defined density functions. ⇒ Classical ML demanding
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sinh-arcsinh (SAS) distribution

Alternative transformation of a standard normal developed by Jones
and Pewsey (2005)
Let Z be a random variable with a standard normal distribution N(0,1).

X = ξ +σS−1
ε,δ (Z )

where S−1
ε,δ (v) = S−ε/δ ,1/δ (v) = sinh

( 1
δ
sinh−1(v)+ ε

δ

)
, ξ ∈ R and

σ ∈ R+
0 .

X ∼ SASε,δ (ξ ,σ).
ε ∈ R controls the skewness
δ∈ R+

0 controls the heaviness of the tails (tail weight decreases when
δ increases).
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Approximating a distribution
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Semiparametric Solution

Stay agnostic on the distribution of the error term and rely on function
of the residuals, which only uses the information invariant wrt. the
underlying distribution.
In our framework, the best function (maximum invariant) that can be
used is based on ranks and signs (Hallin and Werker, 2003)
The idea is to condition the parametric central sequence ∆

(n)
f (θ) on

the maximum invariant to obtain a semiparametric central sequence,
which leads to a semi-parametric efficient estimator of θ , under f :
E
[
∆

(n)
f (θ) | N(n)(θ),R(n)(θ)

]
= ∆̃

(n)∗
f (θ)+oP(1)

with ∆̃
(n)∗
f (θ)∼ N (0, I∗f (θ)), for any distribution in F0.

We finally use a consistent estimator of f to obtain fully semiparametric
efficient estimator (i.e. efficient not only under f )
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Codes in Stata

These estimators are coded in Stata (as well as in Matlab and R). They
will be made available (on SSC) only after the underlying theoretical
papers have been published.
The general syntax is the following:

cmd depvar indepvars , dvarlag(spatname ) [options]

where cmd is the command name (sarnp for the semiparametric
estimator and sarflex for the flexible parametric)

In the dvarlag(spatname ) option, the user declares a weighting ma-
trix that defines a connectivity lag of the dependent variable (like in
spregress).
Data have to be spset.
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Stata commands
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Stata commands
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Codes in Stata

Several command specific options are available. In the flexible
parametric, est() option allows to declare TGH (the default), SAS or
L1.

For post estimation, several predictions are possible:

rform generates the reduced form (or total effect) (default).
direct generates the direct effects.
indirect generates the indirect effects.
xb generates the linear prediction.
naive generates the naive prediction.
residuals generates residuals.
wy generates the spillover effect of the dependent variable.
The margins commands can thus be applied where applicable.
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Codes in Stata
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Codes in Stata
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Codes in Stata

ML NP TGH SAS
x1 1.018*** 1.025*** 1.033*** 1.032***

(0.068) (0.056) (0.063) (0.062)
x2 1.116*** 1.093*** 1.094*** 1.102***

(0.068) (0.057) (0.063) (0.063)
x3 0.989*** 1.012*** 1.002*** 1.002***

(0.063) (0.052) (0.059) (0.058)
Constant 1.341*** 0.917** 1.194*** 1.145***

(0.363) (0.294) (0.315) (0.321)

Wy 0.487*** 0.658*** 0.543*** 0.548***
(0.140) (0.106) (0.116) (0.115)

* p<0.05, ** p<0.01, *** p<0.001
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Simulations

Simulations setup

yi = λWi .y+1+xi + εi

X ∼ N(0,1),n = 300; 500; 900

1000 replications
10 Nearest Neighbors interaction matrix
Preliminary estimator: 2SLS

(
θ̃ (n)

)
Measured Bias: med(θr −θtrue), r = 1, · · · ,1000
Measured Variability: Interquartile range divided by 1.349
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Distributions
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Efficiency of λ , n = 300
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Efficiency of β1, n = 300
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Bias of λ , n = 300
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Bias of β1, n = 300
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Comparison between IQR and median S.E. for λ , n = 300,
SAS distribution
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Comparison between IQR and median S.E. for λ , n = 300,
SAS distribution
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Illustration on a trade equation

Behrens, Ertur and Koch (2012) (BEK) estimate a trade model using
spatial econometrics methods to assess the effect of the Canada-US
border on trade flows
Dataset on 40 regions (30 US States and 10 CAN Provinces) n = 1600
Estimation of the following model:

ln(Zij) = β0 +β1dij +β2 ln(wi)+β3bij +λ

n

∑
k ̸=i

Lk
L ln(Zkj)+ εij

Zij : Manufacturing exports from i to j , standardized by GDP
dij : Distance between i and j (includes a measure of internal distance)
wi : Average hourly manufacturing wage in region i
bij : 1 if i is CAN and j is US and vice-versa
Li : Population in region i .

Objective: Compare the results obtained under normality with those
relying on more flexible distributions
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Results comparison

QML TSLS GMM TGH SAS R&S
Constant -13.869 -14.378 -12.274 -12.752 -12.700 -12.230

(0.709) (0.683) (0.691) (0.523) (0.510) (0.472)
[-19.496] [-21.049] [-17.767] [-24.376] [-24.915] [-25.898]

dij -1.255 -1.219 -1.280 -1.198 -1.206 -1.208
(0.035) (0.034) (0.033) (0.026) (0.025) (0.024)

[-35.984] [-35.708] [-39.278] [-46.164] [-48.073] [-50.753]
ln(wi ) -1.163 -1.149 -1.759 -1.187 -1.196 -1.264

(0.176) (0.177) (0.170) (0.135) (0.130) (0.124)
[-6.631] [-6.482] [-10.370] [-8.795] [-9.174] [-10.220]

bij -1.046 -1.056 -0.804 -1.191 -1.188 -1.199
(0.066) (0.066) (0.063) (0.050) (0.049) (0.046)

[-15.961] [-16.044] [-12.726] [-23.641] [-24.433] [-25.972]
λ 0.033 0.005 0.045 0.091 0.090 0.109

(0.029) (0.027) (0.029) (0.021) (0.021) (0.019)
[1.012] [0.186] [1.577] [4.241] [4.285] [5.682]

Notes: standard errors between parentheses and t-stats between square brackets.
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Distribution of the residuals
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Conclusion

Maximum likelihood estimation is efficient when the error distribution
is known, but becomes infeasible with unknown distributions; quasi-
maximum likelihood remains consistent (under normality) but not effi-
cient.
We propose two estimators based on Local Asymptotic Normality, achiev-
ing efficiency.
These estimators can also be used for classical linear models (simplifi-
cation required)
Monte Carlo experiments demonstrate that these estimators outper-
forms existing methods under non-normal error distributions.
Work in progress: considers extending the model to incorporate het-
eroskedasticity and/or non-independence between errors.
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Appendix
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Local Asymptotic Normality (LAN)

The concept is very well explained by Canay (2021). Suppose you have
probability distribution Pθ = N

(
θ ,σ2), with known σ2. Under Pθ ,

log

dP(n)
θ0+τ(n)/

√
n

dP(n)
θ0

=− 1
2σ2

n
∑
i=1

(
X (n)

i −θ0 −
τ(n)√

n

)2

+
1

2σ2

n
∑
i=1

(
X (n)

i −θ0
)2

=
1

σ2

n
∑
i=1

(
X (n)

i −θ0
)

τ(n)√
n − τ(n)

2

2σ2

= τ
(n)n1/2

(
X̄ (n)−θ0

)
/σ

2 − τ(n)
2

2 1/σ
2

= τ
(n)∆(n)− 1

2 τ
(n)2

Iθ0

where ∆(n) = n1/2
(

X̄ (n)−θ0
)
/σ2 ∼ N

(
0, Iθ0

)
and Iθ0 = 1/σ2

⇒ log

[
dP(n)

θ+τ(n)/
√

n

dP(n)
θ

]
∼ N

(
−1

2
τ2

σ2 ,
τ2

σ2

)
under Pθ

Debarsy, Verardi and Vermandele Efficient estimation of SAR models 36 / 43



Local Asymptotic Normality

Definition

Consider a sequence of statistical models
{

P(n)
θ

}
indexed by a parameter

θ ∈Θ and the sample size n. The model sequence exhibits LAN at a true
parameter value θ0 if there exist sequences of random vectors ∆(n)(θ) and
symmetric positive semi-definite matrices I(θ0) such that the log-likelihood
ratio satisfies the following approximation:

log
dP(n)

θ0+τ/
√

n

dP(n)
θ0

= (τ(n))T∆(n)(θ0)−
1
2(τ

(n))TI(θ0)τ
(n)+oP(1)

where (i) τ is a fixed vector representing the local perturbation of the pa-
rameter θ0, and (ii)∆(n)(θ0) converges in distribution to a normal random
vector ∆(n)(θ0)∼ N (0, I(θ0))
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Practical Implementation I

The LAN property allows us to obtain an efficient estimator by refining
a
√

n−consistent preliminary estimator.

θ̂
(n)

= θ̃
(n)

+
1√
n

[
I
(

θ̃
(n))]−1

∆(n)
(

θ̃
(n))

1. For the regression coefficients, we consider a SAR model estimated by
2SLS that gives a preliminary residuals

e(n)i

(
β̃
(n)

, λ̃ (n)
)
= y (n)

i −
(

x(n)i

)T
β̃
(n)

− λ̃
(n)W(n)

i . y(n)

Attention, the constant term is not directly estimated, but appear as
the location parameter of the distribution.
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Practical Implementation II

2. For the parameters of the density function (γ), we use quantile least
squares, as proposed by Xu et al. (2014).
Minimizing the (squared) distance between some residual quantiles
and the corresponding theoretical quantiles of the considered distri-
bution:

γ̃
(n) = argmin

γ∈Γ

m

∑
pi=1

[
e(n)pi

(
β̃
(n)

, λ̃ (n)
)
−Qγ

(
pi

n+1

)]2

where e(n)pi

(
β̃
(n)

, λ̃ (n)
)

is the pi
th sample quantile of the residuals

and where m is the number of chosen quantiles.
3. Evaluate the central sequence and the Information matrix at the pre-

liminary estimates
4. Compute the one-step efficient estimator

Debarsy, Verardi and Vermandele Efficient estimation of SAR models 39 / 43



Preliminary Consistent Estimator

As explained earlier, the LAN property allows us to achieve a highly
efficient estimator by refining a consistent preliminary estimator.
For the regression coefficients, we consider a SAR model estimated by
2SLS that gives a preliminary residuals e(n)i .
For the parameters of the density functions, we use quantile least
squares, as proposed by Xu et al. (2014).
The error terms ε

(n)
i (i = 1, . . . ,n) are assumed to be i.i.d. with a

distribution characterized by the quantile function Qγ(·). Hence,
considering, for i = 1, . . . ,n,

e(n)i

(
β̃
(n)

, λ̃ (n)
)
= y (n)

i −
(

x(n)i

)T
β̃
(n)

− λ̃
(n)W(n)

i . y(n)

= y (n)
i −

K
∑
k=1

β̃
(n)
k x (n)

ik − λ̃
(n)W(n)

i . y(n)
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Preliminary Consistent Estimator

We may search for a preliminary estimate γ̃(n) of γ by minimizing the
(squared) distance between some residual quantiles and the
corresponding theoretical quantiles of the distribution characterized
by the parameter γ :

γ̃
(n) = argmin

γ∈Γ

m

∑
pi=1

[
e(n)pi

(
β̃
(n)

, λ̃ (n)
)
−ζpi (γ)

]2

where e(n)pi

(
β̃
(n)

, λ̃ (n)
)

is the pi
th chosen sample quantile of the residuals

fitted using the preliminary consistent estimator, ζpi is the
corresponding theoretical quantile and m is the number of chosen
quantiles.
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Tukey g-and-h error term distribution

Expressions for ∆(n)(θ) and I(θ) are explicit

Qγ (u) = στg ,h (zu) = στg ,h
(
Φ−1(u)

)
Q′

γ (u) =
σ

φ (zu)

[
exp

(
hz2

u
2 +gzu

)
+hzuτg ,h (zu)

]
,

Q′′
γ (u) =

σ

φ2 (zu)

[
(2hzu + zu +g)exp

(
hz2

u
2 +gzu

)
+h

(
1+ z2

u +hz2
u
)

τg ,h (zu)

]
,

∂Qγ (u)
∂γ1

=
∂Qγ (u)

∂σ
= τg ,h (zu) ,

∂Q′
γ (u)

∂γ1
=

∂Q′
γ (u)

∂σ
=

1
σ

Q′
γ (u)

∂Qγ (u)
∂γ2

=
∂Qγ (u)

∂g =
σ

g

[
zu exp

(
hz2

u
2 +gzu

)
− τg ,h (zu)

]
,

∂Q′
γ (u)

∂γ2
=

∂Q′
γ (u)

∂g =
σzu

φ (zu)

[(
1+ hzu

g

)
exp

(
hz2

u
2 +gzu

)
− h

g τg ,h (zu)

]
,

∂Qγ (u)
∂γ3

=
∂Qγ (u)

∂h =
σz2

u
2 τg ,h (zu) ,

∂Q′
γ (u)

∂γ3
=

∂Q′
γ (u)

∂h =
σzu

φ (zu)

[
zu
2 exp

(
hz2

u
2 +gzu

)
+

(
1+ hz2

u
2

)
τg ,h (zu)

]
.
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SAS error term distribution

Expressions for ∆(n)(θ) and I(θ) are explicit
Qγ (u) = σS− ε

δ
, 1

δ

(zu) = σS− ε

δ
, 1

δ

(
Φ−1(u)

)
,

Q′
γ (u) =

σ

δφ (zu)
√

1+ z2
u

C− ε

δ
, 1

δ

(zu) ,Cε,δ (t) = cosh
(
δ sinh−1(t)− ε

)
Q′′

γ (u) =
σ

δ 2φ2 (zu)(1+ z2
u )

[
S− ε

δ
, 1

δ

(zu)+δC− ε

δ
, 1

δ

(zu)
z3

u√
1+ z2

u

]
,

∂Qγ (u)
∂γ1

=
∂Qγ (u)

∂σ
= S− ε

δ
, 1

δ

(zu) ,
∂Q′

γ (u)
∂γ1

=
∂Q′

γ (u)
∂σ

=
1
σ

Q′
γ (u)

∂Qγ (u)
∂γ2

=
∂Qγ (u)

∂ε
=

σ

δ
C− ε

δ
, 1

δ

(zu) ,

∂Q′
γ (u)

∂γ2
=

∂Q′
γ (u)

∂ε
=

σ

δ 2φ (zu)
√

1+ z2
u

S∂

−ε/δ ,1/δ(zu)
,

∂Qγ (u)
∂γ3

=
∂Qγ (u)

∂δ
=

(−σ)

δ
C− ε

δ
, 1

δ

(zu)

(
1
δ
sinh−1 (zu)+

ε

δ

)
,

∂Q′
γ (u)

∂γ3
=

∂Q′
γ (u)

∂δ
=

(−σ)

δ 2φ (zu)
√

1+ z2
u

[
C− ε

δ
, 1

δ

(zu)+S− ε

δ
, 1

δ

(zu)

(
1
δ
sinh−1 (zu)+

ε

δ

)]
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