Exchangeably weighted bootstrap schemes

2022 Swiss Stata user group meeting - Bern, November 18, 2022

Philippe Van Kerm University of Luxembourg and LISER

- How to generate bootstrap samples?
- How to make inference from them (confidence intervals)?

- How to generate bootstrap samples?
- How to make inference from them (confidence intervals)?

- How to generate bootstrap samples?
- How to make inference from them (confidence intervals)?

- How to generate bootstrap samples?
- How to make inference from them (confidence intervals)?

Generating bootstrap samples

(Efron and Tibshirani, 1993, Davison and Hinkley, 1997)

- Non-parametric bootstrap
 - » Classic paired boostraps bsample
 - » Block bootstraps bsample
 - » Balanced bootstraps bsweights (Kolenikov, 2010)
 - » Survey bootstraps bsweights, rhsbsample (Van Kerm, 2013);
 - » Exchangeable (weighted) bootstrap exbsample
 - (Praestgaard and Wellner, 1993) (also see Chernozhukov et al., 2013)
- Residual bootstrap
 - » Wild bootstrap boottest (Roodman et al., 2019)

(Fuzzy classification - incomplete and not mutually exclusive)

- Paired bootstrap: obs appear an integer number of times in bootstrap samples
- \implies 'frequency weighting' of original sample
 - Poisson bootstrap: draw from a Poisson(1) distribution to set the bootstrap frequency weight
 - Why stick to integer weights? Exponential bootstrap: make a draw from an exponential(1) distribution
 - » each observation has a positive (non-integer) weight
 - advantage: no observation is ever 'excluded' from the sample
 no issues of 'no observations' in resamples (e.g., in logits on rare events) or perfect collinearity; bootstrap for matching estimators (Otsu and Rai, 2017))
 - rescale the weights to average to 1 (sum to n) ⇒ Bayesian Bootstrap (Rubin, 1981) (Dirichlet distribution)

- Paired bootstrap: obs appear an integer number of times in bootstrap samples
- \implies 'frequency weighting' of original sample
 - Poisson bootstrap: draw from a Poisson(1) distribution to set the bootstrap frequency weight
 - Why stick to integer weights? Exponential bootstrap: make a draw from an exponential(1) distribution
 - » each observation has a positive (non-integer) weight
 - advantage: no observation is ever 'excluded' from the sample
 no issues of 'no observations' in resamples (e.g., in logits on rare events) or perfect collinearity; bootstrap for matching estimators (Otsu and Rai, 2017))
 - rescale the weights to average to 1 (sum to n) → Bayesian Bootstrap (Rubin, 1981) (Dirichlet distribution)

- Paired bootstrap: obs appear an integer number of times in bootstrap samples
- \implies 'frequency weighting' of original sample
 - Poisson bootstrap: draw from a Poisson(1) distribution to set the bootstrap frequency weight
 - Why stick to integer weights? Exponential bootstrap: make a draw from an exponential(1) distribution
 - » each observation has a positive (non-integer) weight
 - advantage: no observation is ever 'excluded' from the sample
 no issues of 'no observations' in resamples (e.g., in logits on rare events) or perfect collinearity; bootstrap for matching estimators (Otsu and Rai, 2017))
 - rescale the weights to average to 1 (sum to n) → Bayesian Bootstrap (Rubin, 1981) (Dirichlet distribution)

- Paired bootstrap: obs appear an integer number of times in bootstrap samples
- \implies 'frequency weighting' of original sample
 - Poisson bootstrap: draw from a Poisson(1) distribution to set the bootstrap frequency weight
 - Why stick to integer weights? Exponential bootstrap: make a draw from an exponential(1) distribution
 - » each observation has a positive (non-integer) weight
 - advantage: no observation is ever 'excluded' from the sample
 no issues of 'no observations' in resamples (e.g., in logits on rare events) or perfect collinearity; bootstrap for matching estimators (Otsu and Rai, 2017))
 - rescale the weights to average to 1 (sum to n) → Bayesian Bootstrap (Rubin, 1981) (Dirichlet distribution)

- Paired bootstrap: obs appear an integer number of times in bootstrap samples
- \implies 'frequency weighting' of original sample
 - Poisson bootstrap: draw from a Poisson(1) distribution to set the bootstrap frequency weight
 - Why stick to integer weights? Exponential bootstrap: make a draw from an exponential(1) distribution
 - » each observation has a positive (non-integer) weight
 - » advantage: no observation is ever 'excluded' from the sample

 \implies no issues of 'no observations' in resamples (e.g., in logits on rare events) or perfect collinearity; bootstrap for matching estimators (Otsu and Rai, 2017))

» rescale the weights to average to 1 (sum to n) \implies Bayesian Bootstrap (Rubin, 1981) (Dirichlet distribution)

Integer vs non-integer bootstrap weights


```
Syntax
exbsample [#] [if] [in] [weight] [using filename]
[, stub(newvarnameprefix) distribution(poisson|exponential) norescale
balance(#) strata(varlist) cluster(varlist) frame(name) ... ]
```

(A simple command really, but which takes care of nitty-gritty details.)


```
Syntax
exbsample [#] [if] [in] [weight] [using filename]
[, stub(newvarnameprefix) distribution(poisson|exponential) norescale
balance(#) strata(varlist) cluster(varlist) frame(name) ... ]
```

(A simple command really, but which takes care of nitty-gritty details.)


```
Syntax
exbsample [#] [if] [in] [weight] [using filename]
[, stub(newvarnameprefix) distribution(poisson|exponential) norescale
balance(#) strata(varlist) cluster(varlist) frame(name) ... ]
```

(A simple command really, but which takes care of nitty-gritty details.)


```
Syntax
exbsample [#] [if] [in] [weight] [using filename]
[, stub(newvarnameprefix) distribution(poisson|exponential) norescale
balance(#) strata(varlist) cluster(varlist) frame(name) ... ]
```

(A simple command really, but which takes care of nitty-gritty details.)

- The flexible (but hardest) way: repeat analysis with alternative weight variables
 - » e.g., passing weights as argument to do files (and looping): do mydofile.do rweightvar'i'
 - » post results in files ('resultssets')
 - .. and combine resulting estimates 'manually' (allows flexibility in how CIs are constructed)
- Use the svy bootstrap prefix (instead of standard bootstrap: prefix)
- Use Jeff Pitblado's bs4rw prefix (a predecessor of svy bootstrap:)

A simple example

Generate the bootstrap weights

. sysuse auto , clear (1978 Automobile Data)	
. exbsample 499 , stub(rw)	// vars rw1 - rw499 created
>	
>	
>	
>	
>	
>	

. summarize rw1 rw2 rw3 rw499

Variable	Obs	Mean	Std. Dev.	Min	Max
rw1	74	1	1.014414	.0495382	4.726035
rw2	74	1	1.152799	.0043677	8.042064
rw3	74	1	.9435121	.0204333	3.754344
rw499	74	1	1.12571	.0051524	5.829083

Option 1: J Pitblado's bs4rw prefix command

Option 2: svy bootstrap prefix

svy bootstrap (Bootstrapped command needs to accept iweight-s)

 svyset , bsi (output omittee svy bootstra 	<pre>weight(rw*) ' d) ap , nodots :</pre>	vce(bootstrap mean price)	
Survey: Mean e	estimation	Numbe	r of obs =	74
		Popul	ation size =	74
		Repli	cations =	499
	Observed	Bootstrap	Normal	-based
	Mean	Std. Err.	[95% Conf.	[Interval]
price	6165.257	328.053	5522.285	6808.229

. di el(r(table),2,1)*sqrt(499/498) 328.38223

svy bootstrap (force non-estimation commands)

. svy bootstr	ap mn=r(mean)	, nodots for	ce : sum	mmarize p:	rice		
Bootstrap res	ults			Number	of obs	=	74
_				Populat	ion size	=	7.
				Replica	tions	=	499
command mn	: summarize] : r(mean)	price					
	Observed	Bootstrap			N	ormal	-based
	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
mn	6165.257	328.053	18.79	0.000	5522.	285	6808.229

The benefit of exponential bootstrap in action

```
. bootstrap : logit foreign length i.rep78 if rep78>2
Bootstrap replications (50)
_____ 1 ____ 2 ____ 3 ____ 4 ____ 5
                                              50
Logistic regression
                                               Number of obs = 59
                                               Replications = 41
                                               Wald chi2(3) = 18.77
                                               Prob > chi2 = 0.0003
                                               Pseudo R2
                                                           = 0.4872
Log likelihood = -19.697108
  (output omitted)
Note: One or more parameters could not be estimated in 9 bootstrap replicates:
     standard-error estimates include only complete replications.
. bs4rw , rweight(rw1-rw50) : logit foreign length i.rep78 if rep78>2
(running logit on estimation sample)
BS4Rweights replications (50)
_____ 1 ____ 2 ____ 3 ____ 4 ____ 5
                                              50
  Number of obs =
Logistic regression
                                                                64
                                               Replications =
                                                                50
                                               Wald chi2(3) = 10.44
                                               Prob > chi2 = 0.0152
Log likelihood = -19.697108
                                               Pseudo R2
                                                           = 0.4872
  (output omitted)
```


Weighted calculations

Generate weighted replication weights

. exbsample 49	9 [iw=weight]	, stub(rw)	replace // va	rs rw1 - rw499	9 created
>					
>					
>					
>					
>					
>					
. bs4rw , rwei	ght(rw1-rw499) nodots : m	ean price [iw	=weight]	
Mean estimatio	n	Numbe	r of obs =	74	
		Repli	cations =	499	
	Observed	Bootstrap	Normal	-based	
	Mean	Std. Err.	[95% Conf.	Interval]	
price	6568.637	382.1837	5819.571	7317.703	

Bootstrapped commands must accept both iw and pw with svy bootstrap

```
. svyset [pw=weight] , bsrweight(rw*) vce(bootstrap)
  (output omitted)
```

```
. svy bootstrap , nodots : mean price
```

Survey:	Mean	estimation	Number	of	obs	=	74
			Populat	ion	size	=	223,440
			Replica	tio	ns	=	499

	Observed	Bootstrap	Normal-	-based
	Mean	Std. Err.	[95% Conf.	Interval]
price	6568.637	381.8005	5820.322	7316.952

Weighted calculations with svy bootstrap

Bootstrapped commands must accept both iw and pw with svy bootstrap

```
. // convert pw into iw
. pr def mysu , properties(svyb)
        if (ustrregerm('"'0'"', "\[(\s*pwe?i?g?h?t?\s*=).*\s*\]")==1) {
  1.
               loc 0 = subinstr("'0'", "'=ustrregexs(1)'", "iw=", 1)
  2.
  3
        }
        su '0'
  4.
 5, end
 svv bootstrap mu=r(mean) , nodots : mysu price
Bootstrap results
                                            Number of obs =
                                                                      74
                                            Population size = 223,440
                                            Replications
                                                                     499
                                                            =
     command: mysu price
          mu: r(mean)
               Observed
                         Bootstrap
                                                         Normal-based
                         Std. Err. z
                  Coef.
                                           P > |z|
                                                     [95% Conf. Interval]
                         381.8005 17.20
                                                     5820.322
                                                                7316.952
         m11
               6568.637
                                          0.000
```


Statistical properties of exchangeable bootstraps similar to paired bootstrap

Statistical properties of exchangeable bootstraps similar to paired bootstrap

Statistical properties of exchangeable bootstraps similar to paired bootstrap

Statistical properties of exchangeable bootstraps similar to paired bootstrap

Statistical properties of exchangeable bootstraps similar to paired bootstrap

- Exchangeably weighted bootstrap schemes are straightforward and attractive (exponential bootstrap in particular)
- ... and exbsample can help
- Exploiting replication weights is admittedly limited if using built-in (prefix) commands only (some further programming for handling replications may be needed for more than small-scale applications)

References i

References

Chernozhukov, V., Fernández-Val, I. and Melly, B. (2013), 'Inference on counterfactual distributions', *Econometrica* **81**(6), 2205–2268. **URL:** *http://dx.doi.org/10.3982/ECTA10582*

- Davison, A. C. and Hinkley, D. V. (1997), *Boostrap Methods and Their Application*, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, USA.
- Efron, B. and Tibshirani, R. J. (1993), *An Introduction to the Bootstrap*, Chapman and Hall, London, UK.
- Kolenikov, S. (2010), 'Resampling variance estimation for complex survey data', *Stata Journal* **10**, 165–199.

- Otsu, T. and Rai, Y. (2017), 'Bootstrap inference of matching estimators for average treatment effects', *Journal of the American Statistical Association* **112**(520), 1720–1732.
- Praestgaard, J. and Wellner, J. A. (1993), 'Exchangeably weighted bootstraps of the general empirical process', *The Annals of Probability* **21**(4), 2053–2086.
- Roodman, D., Orregaard Nielsen, M., MacKinnon, J. G. and Webb, M. D. (2019), 'Fast and wild: Bootstrap inference in Stata using boottest', *The Stata Journal* **19**(1), 4–60.
- Rubin, D. B. (1981), 'The Bayesian bootstrap', *The Annals of Probability* 9(1), 130–134.
- Van Kerm, P. (2013), 'Rhsbsample: Stata module for repeated half-sample bootstrap sampling', Statistical Software Components, Boston College Department of Economics. URL: http://ideas.repec.org/c/boc/bocode/s457697.html

