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Generating bootstrap samples

(Efron and Tibshirani, 1993, Davison and Hinkley, 1997)

– Non-parametric bootstrap
» Classic paired boostraps – bsample

» Block bootstraps – bsample

» Balanced bootstraps – bsweights (Kolenikov, 2010)

» Survey bootstraps – bsweights, rhsbsample (Van Kerm, 2013);

» Exchangeable (weighted) bootstrap – exbsample

(Praestgaard and Wellner, 1993) (also see Chernozhukov et al., 2013)

– Residual bootstrap
» Wild bootstrap – boottest (Roodman et al., 2019)

(Fuzzy classification – incomplete and not mutually exclusive)



Exchangeable (weighted) bootstrap

– Paired bootstrap: obs appear an integer number of times in bootstrap samples

=⇒ ‘frequency weighting’ of original sample

– Poisson bootstrap: draw from a Poisson(1) distribution to set the bootstrap
frequency weight

– Why stick to integer weights? Exponential bootstrap: make a draw from an
exponential(1) distribution

» each observation has a positive (non-integer) weight

» advantage: no observation is ever ‘excluded’ from the sample
=⇒ no issues of ‘no observations’ in resamples (e.g., in logits on rare events) or
perfect collinearity; bootstrap for matching estimators (Otsu and Rai, 2017))

» rescale the weights to average to 1 (sum to n) =⇒ Bayesian Bootstrap (Rubin,
1981) (Dirichlet distribution)
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A little helper: The exbsample command

The command exbsample generates bootstrap replication weights using Poisson or
Exponential draws

Syntax

exbsample
[

#
] [

if
] [

in
] [

weight
] [

using filename
][

, stub(newvarnameprefix) distribution(poisson|exponential) norescale

balance(#) strata(varlist) cluster(varlist) frame(name) ...
]

(A simple command really, but which takes care of nitty-gritty details.)

ssc install exbsample
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Using replication weights

– The flexible (but hardest) way: repeat analysis with alternative weight variables
» e.g., passing weights as argument to do files (and looping):

do mydofile.do rweightvar`i'

» post results in files (‘resultssets’)

.. and combine resulting estimates ‘manually’ (allows flexibility in how CIs are
constructed)

– Use the svy bootstrap prefix (instead of standard bootstrap: prefix)

– Use Jeff Pitblado’s bs4rw prefix (a predecessor of svy bootstrap:)



A simple example

Generate the bootstrap weights

. sysuse auto , clear
(1978 Automobile Data)

. exbsample 499 , stub(rw) // vars rw1 - rw499 created

................................................................................
> ..............................................................................
> ..............................................................................
> ..............................................................................
> ..............................................................................
> ..............................................................................
> .............................
. summarize rw1 rw2 rw3 rw499

Variable Obs Mean Std. Dev. Min Max

rw1 74 1 1.014414 .0495382 4.726035
rw2 74 1 1.152799 .0043677 8.042064
rw3 74 1 .9435121 .0204333 3.754344

rw499 74 1 1.12571 .0051524 5.829083



Option 1: J Pitblado’s bs4rw prefix command

bs4rw (Bootstrapped command needs to accept iweight-s)

. qui net install bs4rw , from(http://www.stata.com/users/jpitblado/)

. bs4rw , rweight(rw1-rw499) nodots : mean price
Mean estimation Number of obs = 74

Replications = 499

Observed Bootstrap Normal-based
Mean Std. Err. [95% Conf. Interval]

price 6165.257 328.3822 5521.639 6808.874

. bs4rw mn=r(mean) , rweight(rw1-rw499) nodots : summarize price
BS4Rweights results Number of obs = 74

Replications = 499
command: summarize price

mn: r(mean)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

mn 6165.257 328.3822 18.77 0.000 5521.639 6808.874



Option 2: svy bootstrap prefix

svy bootstrap (Bootstrapped command needs to accept iweight-s)

. svyset , bsrweight(rw*) vce(bootstrap)
(output omitted )

. svy bootstrap , nodots : mean price
Survey: Mean estimation Number of obs = 74

Population size = 74
Replications = 499

Observed Bootstrap Normal-based
Mean Std. Err. [95% Conf. Interval]

price 6165.257 328.053 5522.285 6808.229

. di el(r(table),2,1)*sqrt(499/498)
328.38223



Option 2: svy bootstrap prefix

svy bootstrap (force non-estimation commands)

. svy bootstrap mn=r(mean), nodots force : summarize price

Bootstrap results Number of obs = 74
Population size = 74
Replications = 499

command: summarize price
mn: r(mean)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

mn 6165.257 328.053 18.79 0.000 5522.285 6808.229



The benefit of exponential bootstrap in action

. bootstrap : logit foreign length i.rep78 if rep78>2

Bootstrap replications (50)
1 2 3 4 5

.................x.....xx...x..x...xx....x..x..... 50

Logistic regression Number of obs = 59
Replications = 41
Wald chi2(3) = 18.77
Prob > chi2 = 0.0003

Log likelihood = -19.697108 Pseudo R2 = 0.4872

(output omitted )
Note: One or more parameters could not be estimated in 9 bootstrap replicates;

standard-error estimates include only complete replications.

. bs4rw , rweight(rw1-rw50) : logit foreign length i.rep78 if rep78>2
(running logit on estimation sample)

BS4Rweights replications (50)
1 2 3 4 5

.................................................. 50

Logistic regression Number of obs = 64
Replications = 50
Wald chi2(3) = 10.44
Prob > chi2 = 0.0152

Log likelihood = -19.697108 Pseudo R2 = 0.4872

(output omitted )



Weighted calculations

Generate weighted replication weights

. exbsample 499 [iw=weight] , stub(rw) replace // vars rw1 - rw4999 created

................................................................................
> ..............................................................................
> ..............................................................................
> ..............................................................................
> ..............................................................................
> ..............................................................................
> .............................
. bs4rw , rweight(rw1-rw499) nodots : mean price [iw=weight]

Mean estimation Number of obs = 74
Replications = 499

Observed Bootstrap Normal-based
Mean Std. Err. [95% Conf. Interval]

price 6568.637 382.1837 5819.571 7317.703



Weighted calculations with svy bootstrap

Bootstrapped commands must accept both iw and pw with svy bootstrap

. svyset [pw=weight] , bsrweight(rw*) vce(bootstrap)
(output omitted )

. svy bootstrap , nodots : mean price

Survey: Mean estimation Number of obs = 74
Population size = 223,440
Replications = 499

Observed Bootstrap Normal-based
Mean Std. Err. [95% Conf. Interval]

price 6568.637 381.8005 5820.322 7316.952



Weighted calculations with svy bootstrap

Bootstrapped commands must accept both iw and pw with svy bootstrap

. // convert pw into iw

. pr def mysu , properties(svyb)
1. if (ustrregexm(`"`0'"' , "\[(\s*pwe?i?g?h?t?\s*=).*\s*\]")==1) {
2. loc 0 = subinstr("`0'", "`=ustrregexs(1)'", "iw=", 1)
3. }
4. su `0'
5. end

. svy bootstrap mu=r(mean) , nodots : mysu price

Bootstrap results Number of obs = 74
Population size = 223,440
Replications = 499

command: mysu price
mu: r(mean)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

mu 6568.637 381.8005 17.20 0.000 5820.322 7316.952



Does it really ‘work’?

Statistical properties of exchangeable bootstraps similar to paired bootstrap

Ex.: coverage rate of 95% bootstrapped CI (normal approximation) for inequality measures
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Conclusion

– Exchangeably weighted bootstrap schemes are straightforward and attractive
(exponential bootstrap in particular)

– ... and exbsample can help

– Exploiting replication weights is admittedly limited if using built-in (prefix)
commands only (some further programming for handling replications may be
needed for more than small-scale applications)
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