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Motivation

A major advantage of panel data is that repeated
observations on the same units allows to analyze individual
dynamics, typically modeled by adding lagged dependent
variables to the individual effects panel model specification
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Motivation

A major advantage of panel data is that repeated
observations on the same units allows to analyze individual
dynamics, typically modeled by adding lagged dependent
variables to the individual effects panel model specification

BUT the standard Fixed Effects (FE) estimator is
inconsistent when N — oo while T is fixed (Nickell, 1981)

= Various alternative estimators have been proposed



Generalized method of moments estimators

Difference GMM by Arellano & Bond (1991); System GMM
by Arellano & Bover (1995) and Blundell & Bond (1998)

Advantage: Under appropriate assumptions: asymptotically
unbiased when N tends to infinity and T is finite
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Difference GMM by Arellano & Bond (1991); System GMM
by Arellano & Bover (1995) and Blundell & Bond (1998)

Motivation

Advantage: Under appropriate assumptions: asymptotically
unbiased when N tends to infinity and T is finite

Disadvantage: Poor small-sample properties given
instrumental-variables technique:

> relatively large standard deviation compared with the
FE estimator (Arellano & Bond, 1991; Kiviet, 1995)

» finite-sample bias due to weak-instrument problems
(Ziliak, 1997; Bun & Windmeijer, 2010)

» highly unstable GMM estimates over alternative
instrument sets (Roodman, 2009)
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Based on an analytical approximation of the standard FE
estimator’s small sample bias in a first-order dynamic panel
data model (see xtlsdvc by Bruno, 2015)

Motivation

Advantage: Superior small sample properties compared to
GMM estimators (removes most of the bias of the FE
estimator while maintaining its relatively small coefficient
uncertainty)



Kiviet (1995) bias-corrected FE estimator

Based on an analytical approximation of the standard FE
estimator’s small sample bias in a first-order dynamic panel
data model (see xtlsdvc by Bruno, 2015)

Advantage: Superior small sample properties compared to
GMM estimators (removes most of the bias of the FE
estimator while maintaining its relatively small coefficient
uncertainty)

Disadvantage: Bias expression of the FE estimator is
derived under strict set of assumptions (homoscedasticity,
etc.)

— Correction procedure needs to be re-derived to be
applicable in less restrictive settings (see e.g. Bun, 2003, or
Bun & Carree, 2006)
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Everaert & Pozzi (2007) bias-corrected FE
estimator

Develop a bootstrap-based bias correction procedure with
similar small sample properties as those of Kiviet's (1995)
analytical bias-corrected FE estimator

Advantages:

» Does not require an analytical expression for the bias of
the FE estimator as this is numerically evaluated using
bootstrap resampling

» Applicable in non-standard cases through an adequate
modification of the bootstrap resampling scheme
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Contribution of the paper

Stata routine, xtbcfe, that executes a bootstrap-based
bias-corrected FE (BCFE) estimator building on Everaert &
Pozzi (2007), yet

>
>

>

simplifying the core of their bootstrap algorithm

extending the algorithm to allow for higher order and
unbalanced panels

inference can be carried out using either a parametric or
non-parametric bootstrapped variance-covariance
matrix or percentile intervals

allowing for a variety of initialization and resampling
schemes to accommodate general heteroscedasticity
patterns and error cross-sectional dependence (CSD)
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Error (re)sampling schemes

To accommodate various distributional assumptions about
the error term €;;, our bootstrap algorithm includes several
parametric error sampling and non-parametric error
resampling options

All of these rely in some way on the rescaled error terms &,

~ NT
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Draw 5“ from the i.i.d. N (O o; ) distribution, and allowing
for

Bias correction

P cross- sectional heteroscedasticity:
2
of, =07 =T Zt 1 (& )

> temporal heteroscedasticity: 02 = 07 = + Zf\il (E‘Zt)2

» assuming homoskedasticity 72 = =52

No account of general heteroscedastiticy (02) or error CSD
(0ijt # 0) (would require specific assumptions about the
functional form of these error structures)



Non-parametric resampling schemes s comtecton.
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Obtain 5% by resampling the rescaled error terms &},

» no distributional assumptions required about &;; while Bies correction
its covariance structure can be preserved by an
appropriate design of the resampling scheme

7it and s;; denote cross-section and time series bootstrap
indices drawn specifically for cross-section 7 at time ¢

The way these indices are drawn (with replacement) from the
cross-section index (1,...,N) and the time index (1,...,7T)
is aligned with the alleged covariance structure in g4



Bootstrap-based

Non-parametric sampling schemes I e
1. Homoscedasticity (02 = ?): resample 27, both over R A
cross-sections and time, i.e. draw j; from (1,..., N) and s;
from (1,...,T)

2. Pure cross-sectional heteroscedasticity (07 = 07):
resample £, over time within cross-sections, i.e. draw s;
from (1,...,T) while:

2.1 if 02 random over cross-sections — draw entire
cross-sections and resample over time within
cross-sections: ji; = j;

2.2 if 02 cross-section specific — resample over time within
cross-sections: j;; =1

Bias correction

3. Pure temporal heteroscedasticity (0 = 07): resample £,

over cross-sections within time periods, i.e. draw j;; from

(1,...,N) while

3.1 Unconditional — draw entire time periods and
resample over cross-sections within time periods:
Sit = St

3.2 Conditional — resample over the cross-sectional
dimension: s;; =t
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4 General heteroscedasticity (02 ): use wild bootstrap
suggested by Liu (1988) and Mammen (1993) to preserve
both the cross-sectional and the temporal structure of the
error terms

Bias correction

4.1 If unconditional variance o2 is random over

cross-sections, first resample entire cross-sections and
next apply the wild bootstrap, i.e. £}, = 1i4E7, ,
4.2 If unconditional variance a? is cross-section specific,
apply a pure wild bootstrap, i.e. €%, = 147,
5 Error CSD (o;;; # 0): the covariance between ¢;; and ¢j; is
non-zero and may be different at each point in time:

5.1 Under global CSD: resample over cross-sections within
time periods

5.2 Under local CSD: resample over time in the same way
for each cross-section, i.e. restrict j;; =i as under 2.2
and s;; = s; as under 3.2
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The calculation of the bootstrap data yft of the algorithm

requires initial values for the lags of the dependent variable Bias correction

b b
(Y5 —(p-1)> -+ > Yi0)

How these initial values are chosen to be generated depends
implicitly on the decision about the initial conditions of the
data

The initialization choice will influence
> the statistical properties of the estimator

» numerical properties of the algorithm in small datasets



Deterministic initialization

Fastest and most straightforward: set (yi?_(p_l), ... ,yi?o)

equal to the observed (centered) initial values
(Yi,—(p—1)» - - - » ¥io) in each bootstrap sample

Advantages
» No assumptions needed about how the initial conditions
are generated (Everaert & Pozzi, 2007)
» Avoid generating initial conditions when the data is not
rich enough

But risk of inducing a spurious dependency over bootstrap
samples, especially if T" is small!
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Analytic inititialization

Draw initial observations from the multivariate normal
distribution

<y7?0""7yzl?,—(p—l)> NN(:U’zv )

In the case of a single lagged dependent variable (p = 1), for

instance:
T ~ N\ 2
= 1 - Xup
0 __ 72 : o 1t

—1 il

which is the variance of y;; around its unconditional mean
Xit8 /(1 —~1) observed over the sample
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Burn-in initialization

Alternative: start in the distant past from initial values set
to zero, e.g. (4! 50 py1 = 0., 4% 50 =0), and then
generate the series yfl, with [ = —49,...,0, setting

X =X,

Then simply use (yz_(p_l), ..., yY) as initial values and
discard the earlier generated values

Advantage: does not require a distributional assumption for
the initial conditions plus the error resampling scheme used
to generate the actual sample can also be used to generate
the initial values
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The small sample distribution of the BCFE estimator can be
simulated by resampling the original data and applying the
bootstrap bias-correction to the FE estimates obtained in
each of the constructed samples

Bias correction

From this simulated distribution we then calculate standard
errors and confidence intervals

The resampling of the original data can be done using a
parametric or a non-parametric approach
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In the last iteration over the bias-correction procedure, we
already obtained J bootstrap samples from a population
where our bias-corrected FE estimate §°¢ is used as a proxy
for the population parameter vector §

Bias correction

= the distribution of the BCFE estimator can be obtained
by applying the bias-correction procedure to the J FE
estimates ;5\]” obtained in the iterative bootstrap procedure

Advantage: the resampling of the data used to obtain the
small sample distribution of the BCFE estimator is exactly

the same as the resampling of the data used to bias-correct
the FE estimator
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As suggested by Kapetanios (2008), resample the original
data for cross-sectional units as a whole with replacement Bias correction

Advantages
P Preserves the dynamic panel structure without the need
to make parametric assumptions

» Valid under general heteroscedasticity patterns and a
global CSD structure in the data (e.g. a common factor
structure)

Yet not valid under local CSD (e.g. a spatial panel structure)



Xtbcfe syntax

The bootstrap procedures presented and tested in this paper
are all contained in the xtbcfe routine. The basic syntax is
as follows:

xtbcfe depvar [indepvars} [if] [, lags (#)
resampling(string) initialization(string) bciters(#)

criterion(#) inference(string) infiters(#)

distribution(string) level(##) param te ]

The program adds the lagged dependent variable(s) as the
first explanatory variable(s) and can fit the simple
autoregressive model without covariates
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Xtbcfe options |

resampling(scheme) specifies the residual resampling scheme to be used in the boot-
strap procedure. The default is resampling(mcho).

scheme  Description

mcho drawing from the normal distribution with estimated homogeneous
variance; the default

mche drawing from the normal distribution with estimated heterogeneous
(cross-section-specific) variance

mcthe drawing from the normal distribution with period (t)-specific
estimated variance

iid for resampling independently over both cross-sections and time

cshet for resampling within cross-sections (cross-sectional heteroskedasticity)

cshet_r for resampling within cross-sections with randomized indices
(random cross-sectional heteroskedasticity)

thet for resampling within time periods (temporal heteroskedasticity)

thet_r  for resampling within time periods with permuted ¢
(random temporal heteroskedasticity)

wboot for wild bootstrap, that is, error terms multiplied by 1 or -1
(general heteroskedasticity)

wboot_r for randomized wild bootstrap, that is, permuted cross-section indices
and error terms multiplied by 1 or —1 (random general
heteroskedasticity, balanced panels only)

csd for resampling identically over cross-sections (cross-sectional

dependence, balanced panels only)
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Xtbcfe options |l

lags(#) specifies the number of lags of the dependent variable to be included among
the predictors. The default is 1ags(1).

initialization(initial) determines the initialization scheme for the bootstrapped lag-
ged dependent variables (!, ,),...,y%). The default is initialization(det).

initial  Desecription
det deterministic initialization, that is,

(yﬁ_(p_l) yo) = (Fim(p=1)s - - Uio): the default
bi burn-in initialization using the resampling scheme defined by

resampling() over the burn-in sample

oy a0

aho analytical homogeneous initiation (y! _(, 1), ul) ~ N (p? =
ahe analytical heterogeneous initiation (y?_(p_l),. ey~ N (ﬁ‘;‘ f:.)

Bootstrap-based
bias correction
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and Ruyssen
Motivation
Contribution
3ias correction
The xtbcfe routine
Monte Carlo

Conclusion
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beciters(#) sets the number of bootstrap iterations used for the construction of the
bias-corrected FE estimator (at least 50). The default is bciters(250).

criterion(#) alters the convergence criterion used in the estimation algorithm. The
default is criterion(0.005). The specified number will be multiplied by the num-

ber of lags (p) of the dependent variable.

The xtbcfe routine

inference (option) specifies the type of SEs and Cls. Under the inference(inf _se)
option, SEs are bootstrapped and are then used to calculate Cls using the Student ¢
distribution. Alternatively, because this distributional assumption may be violated,
especially in small datasets with high temporal dependence, the inference (inf ci)

option calculates Cls directly from the bootstrap distribution. This approach do
not make a distributional assumption but is much more computationally intensive
because, compared with calculating SEs, adequate calculation of the desired per-
centiles requires more bootstrap samples. Finally, the inference (inf appr) option
is a fast alternative that approximates SEs by calculating the dispersion of the FE
estimator over the bootstrap iterations. While this is much faster than the other
options, the resulting SEs are expected to be downward biased, so they should only
be used as a rough approximation. We report some Monte Carlo results in section 4

]

to indicate the relative accuracy of the different inference methods.
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infiters(#) specifies the number of bootstrap iterations to be used for inference. The
default is infiters(250) for all choices of inference(). It is recommended to have
at least 50 iterations for bootstrapping SEs and 1,000 iterations for bootstrapping
percentile intervals. The number of iterations cannot be smaller than 100 when the

inference(inf_ci) option is used. The xtbcfe routine

distribution (histogram) requests that the bootstrap distribution of xtbefe obtained
by the inference procedures be saved in e(dist_befe). This option allows users
to inspect the bootstrap distribution and calculate additional statistics from it.
If this option is omitted, the distribution will be deleted after estimation. Use
distribution(none) to save the bootstrap coefficient matrix in e(dist bcfe).
Specifying distribution(sum) will additionally display a histogram of the boot-
strap distribution for the sum of AR coefficients. The distribution(all) option
adds histograms for all AR coefficients separately.

el(#) specifies the confidence level used to construct Cls. The default is level (95).

param requests that inference procedures be initiated using the parametric bootstrap
instead of the nonparametric default (see section 2.5).

te requests the addition of time effects to the specification. Time dummies are gen-
erated and named according to the time indicator used in the xtset command.
User-specified variables bearing the same name will be overwritten. Time dummies

included in indepvars will be removed.



Xtbcfe stored results

xtbcfe stores the following in e():

Scalars
e(N)
e(N.g)
e(k)
e(df r)
e(t.min)
e(tmax)
e(t.avg)
e(irr)

e(conv)

Macros
e(cmd)
e(depvar)
e(predict)
e(ivar)
e(tvar)

Matrices
e(b)
e(V)
e(dist.bcfe)
e(res.befe)

Functions
e(sample)

number of observations

number of groups

number of exogenous regressors

residual degrees of freedom

minimum number of time periods

maximum number of time periods

average number of time periods

number of cross-sections removed because of irregular spacing or lack of
observations

convergence of the bootstrap algorithm

xtbcfe

name of dependent variable
program used to implement predict
panel variable

time variable

xtbcfe estimates

variance -covariance matrix of the estimators

xtbefe bootstrap distribution if distribution() is specified
xtbcfe error terms

marks estimation sample
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Xtbcfe post-estimation

The xtbefe command supports the postestimation command predict (see [R] predict)
to compute fitted values and residuals. The syntax for predict following xtbcfe is

predict [type] [rwwuar'] [sf] [, statistir}

statistic  Description

xb 3 ApUii-s + x,ta‘ the fitted values; the default

ue @; + Zi¢, the combined residuals

xbu 3 AsYii-s + xitB + @i, the prediction including fixed effect
u @, the fixed effect

e i, the observation-specific error component

The xb and ue statistics are available both in and out of sample; type predict ...

if e(sample) .

. to restrict statistics to the estimation sample. The xbu, u, and e

statistics are calculated only for the estimation sample, even when if e(sample) is not

specified.
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Monte Carlo experiments BCFE

Using Monte Carlo simulations, Everaert & Pozzi (2007)
show that the BCFE estimator

» outperforms the difference and system GMM
estimators, both in terms of bias and inference, in
samples with small to moderate T’

P is insensitive to non-normality of the errors, conditional
heteroscedasticity or non-stationary initial conditions

» has a bias comparable to the analytical bias corrections
of Kiviet (1995) and Bun and Carree (2005)

Further Monte Carlo simulation results illustrate the finite
sample properties of our simplified BCFE bootstrap
algorithm and its extension to higher-order dynamic models
and error CSD
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MC data generation

Data are generated from (??) with z;; restricted to be a
single exogenous explanatory variable, generated as

Tit = pTit-1 + it &it ~iid. N(0,0%) (2)

» Normalize the long-run impact of x;; to one by setting
/8 =1- 25:1 Vs

» Each experiment is based on 1000 iterations, where in
each sample we generate 50 + 1" periods and discard
the first 50 observations

» The BCFE estimator is implemented setting the number
of bootstrap iterations (bciters) to 250
» Analyze the performance of alternative initialization

schemes and adjust the bootstrap resampling scheme
according to the properties of the DGP of y;;
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MC reporting

We report
(i) mean bias (bias)
(ii) standard error (se)

)
(iii) mean estimated standard error (5¢)
(iv)

We also include results for Pooled OLS (POLS), FE and for
the analytical correction (BCFE,,) implemented in the
xtlsdvc routine developed by Bruno(2005) initiated with
the Anderson-Hsiao estimator and standard errors obtained
through 200 bootstrap iterations

real size (size)
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- re - - Bootstrap-based
Simplification bootstrap algorithm B
) De Vos, Everaert
Monte Carlo results for an AR(1) model with v1 = 0.8 il Fupssem
bias  se se size bias  se se size
appr 1000 50 appr  se  ci appr 1000 50 appr  se  ci
T=4,N =20 T=9,N=20
POLS 0.04 0.06 006 - - 012 - - 0.04 0.04 004 - - 022 - -  Monte Carlo
FE 051 013 012 - - 097 - - 024 007 007 - - 096 - -
BCFE,, —0.18 0.17 016 - - 021 - - —0.05 008 008 - - 009 - -
BCFE, —0.14 0.15 - - - - - 025 —004 009 - - - - - ol

BCFEge 0.07 0.17 0.13 0.17 0.17 0.15 0.16 0.09 0.03 0.10 0.07 0.09 0.08 0.21 0.14 0.08
BCFE.n 0.00 0.16 0.13 0.16 0.15 0.08 0.09 0.05 0.00 0.09 0.07 0.08 0.08 0.11 0.09 0.08
BCFE, —0.04 0.17 0.13 0.16 0.16 0.13 0.10 0.09  —0.01 0.09 0.07 0.08 0.08 0.11 0.09 0.10

T =4,N =100 T =9,N =100
POLS 0.05 0.03 0.03 - - 047 - - 0.05 0.02 0.02 - - 0.76 - -
FE —0.51 0.06 0.06 - - 1.00 - - —0.23 0.03 0.03 - - 1.00 - -
BCFE,, —0.13 0.08 0.09 - - 0.30 - - —0.03 0.04 0.04 - - 0.14 - -

BCFE,, —0.13 0.07 - - - - - 080 —0.04 0.04 - - - - - 035
BCFEge 0.09 0.07 0.06 0.07 0.07 0.40 0.31 0.20 0.03 0.05 0.03 0.05 0.04 0.32 0.13 0.07
BCFE,, 0.04 0.08 0.06 0.07 0.07 0.20 0.15 0.07 0.00 0.04 0.03 0.04 0.04 0.14 0.08 0.07
BCFE,  —0.02 0.09 0.06 0.09 0.08 0.21 0.07 0.05  —0.01 0.04 0.03 0.04 0.04 0.13 0.06 0.07




Error CSD

Non-standard scenario with cross-sectionally dependent
errors: focus on a pure (5 = 0) first-order autoregressive
model with 71 = 0.8 and assume that the error term &;; has
the following common factor structure

it = A\iFt + €,
with F; ~ i.i.d. N'(0,1) and €;; ~ i.i.d. N'(0,1)

We follow Sarafidis & Robertson (2009) and generate the
factor loadings as \; ~i.i.d.U (1,4) and set the individual

effect variance to 02 = (1 — v1)(1 +v1) " (13 + 0% + 1),

with 1) and o3 being the mean and variance of the factor
loading distribution
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Error CSD

Monte Carlo results for an AR(1) model with 7 = 0.8
bias se se Tmse  size;  Sizeg bias se se rmse  size;  Sizeg

T=5N=20 T =10,N =20

POLS 0.088 0.049 0.046 0.101 0.53 - 0.090 0.037 0.032 0.098 0.77 -

FE —0.443 0.120 0.104 0.459 0.98 - —0.226 0.075 0.061 0.238 0.94 -

BCFE,,  —0.169 0.148 0.134 0.225 0.25 - —0.053 0.087 0.077 0.102 0.13 -

BCFEcs 0.041 0.159 0.143 0.165 0.17  0.09 0.019 0.100 0.084 0.102 0.15  0.10

BCFEthe: —0.020 0.167 0.146 0.168 0.15 0.10 —0.002 0.097 0.084 0.097 0.13 0.11
T =5,N =100 T =10,N =100

POLS 0.098 0.020 0.020 0.101 0.99 - 0.098 0.014 0.014 0.099 1.00 -

FE —0.430 0.056 0.046 0.434 1.00 - —0.220 0.034 0.027 0.222 1.00 -

BCFE,,  —0.105 0.076 0.074 0.130 0.30 - —0.029 0.044 0.038 0.053 0.16 -

BCFEsq 0.070 0.086 0.078 0.111 0.24 0.13 0.022  0.047 0.044 0.052 0.09 0.07

BCFE¢he: —0.003 0.085 0.080 0.085 0.09 0.07 —0.001 0.044 0.042 0.044 0.07 0.08
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Second-order dynamic model

Subsequently, assume «; ~ i.i.d. N'(0,1) and g; ~ i.i.d.
N (0,1), with z;; generated from (2) setting p = 0.5 and
assuming &;; ~ i.i.d. N (0,1)

Results for a series with strong temporal dependence, setting
either

» 1 = 0.6 and 2 = 0.2— an unbiased estimator is
expected to lie between POLS and FE, but probably
closer to the former than to the latter

> ~; = 1.1 but maintain the stationarity assumption by
setting 2 to -0.2 — an unbiased estimator is expected
to lie closer to the POLS estimator for ; but closer to
the FE estimator for v

Conclusion: xtbcfe performs well in the 2nd order dynamic
model with near perfect test size as N becomes large
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. Bootstrap-based
Second-order dynamic model o
Monte Carlo resuts for an AR(2) model Deachcl)sr'zuEyV:sr:nert

Case 1: 71 = 0.6 and o = 0.2

M 72 " 72
bias se §e size bias se Se size bias se Se size; bias se Se size
T=5N=20 T =10,N =20
POLS 0.08 0.09 0.10 0.10 0.10 0.09 0.10  0.17 0.09 0.07 0.07 0.25 0.09 0.07 0.07 0.26
FE —0.39 0.12 0.11  0.92 —0.20 0.11 0.11 0.40 —0.18 0.08 0.07 0.63 —0.11 0.07 0.07 0.33 Mo Caib
BCFE —0.03 0.14 0.13 0.09 —0.02 0.13 0.13 0.07 —0.01 0.09 0.08 0.09 —0.01 0.08 0.08 0.08
T =5,N =100 T =10,N = 100
POLS 0.09 0.04 0.04 0.59 0.09 0.04 0.04 0.58 0.09 0.03 0.03 0.87 0.09 0.03 0.03 0.87
FE —0.38 0.05 0.05 1.00 —0.19 0.05 0.05 0.97 —0.17 0.04 0.03 1.00 —0.11 0.03 0.03  0.90

BCFE —0.01 0.07 0.07 0.07 —0.01 0.06 0.06 0.06 —0.01 0.04 0.04 0.08 —0.01 0.04 0.04 0.07

Case 2: v; = 1.1 and 7 = —0.2

M 72 " T2
bias se Se  size bias se Se size bias se Se size; bias se Se size
T=5N=20 T =10,N =20
POLS 0.02 0.10 0.10 0.05 0.07 0.10 0.10  0.09 0.04 0.07 0.07 0.07 0.05 0.07 0.07 0.10
FE —0.42 0.12 0.11  0.95 —0.02 0.11 0.11  0.06 —0.18 0.08 0.07 0.66 —0.04 0.08 0.07 0.09
BCFE —0.05 0.13 0.13  0.08 0.00 0.13 0.13 0.09  —0.00 0.09 0.08 0.10 —0.01 0.08 0.08 0.09
T =5,N =100 T =10,N =100
POLS  0.04 0.04 0.04 0.16 0.05 0.04 0.04 0.19 0.05 0.03 0.03 0.28 0.05 0.03 0.03 0.33
FE —0.40 0.06 0.05 1.00 —0.02 0.05 0.05 0.08 —0.18 0.04 0.03 1.00 —0.04 0.03 0.03 0.21

BCFE —0.01 0.06 0.06 0.06 —0.00 0.06 0.06 0.05 —0.00 0.04 0.04 0.06 —0.00 0.03 0.04 0.05
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Iterative bootstrap-based bias-corrected FE estimator for
dynamic panels building on Everaert & Pozzi (2007)

Various bootstrap error resampling schemes to account for

general heteroscedasticity and contemporaneous CSD —

choose the alternative that incorporates the highest degree .
of randomness in the resampling process

Inference using parametric or non-parametric bootstrapped
variance-covariance matrices or percentile intervals

MC: the simplification of the original algorithm results in a
BCFE estimator that is virtually unbiased for very small T,
support the BCFE in higher order dynamic panels and panels
with contemporaneous error CSD
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Thank you!

Questions? Comments? Suggestions? Conclusion

llse Ruyssen

Department of Economics, Ghent University & UNU-CRIS
Sint-Pietersplein 6, B-9000 Ghent, Belgium
llse.Ruyssen@Ugent.be



The model

Homogeneous dynamic panel data model of order p

P
Vit = Qi+ Y Vslit—s + TaB + Eir, (3)
s=1
with
> i=1,...,Nand t=1,...,T being the cross-section and
time-series dimension, respectively
» v, is the dependent variable

» x; is a (1 x (k —p)) vector of strictly exogenous
explanatory variables, where k is the total number of
time-varying regressors

» «; is an unobserved individual effect that may be
correlated with x;;
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Conclusion



Assumptions

Assumptions regarding the error term g;;:

(i) Eleirejs) =0, Vi,j and t # s,
(”) E [Elzt] = U’?t’ Viata
(i) E [5it5jt] = Oijt, Vi, j,t and ¢ # j,

Initial values (v; _(p—1),---,¥io) are observed such that T'is
the actual time series dimension available for estimation

While the bias-correction algorithm allows for an unbalanced
dataset, we present the methodology with a balanced data
set for simplicity
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Stacking observations over time and cross-sections we obtain
y=Wé+ Da+c¢, (4)

where
» y is the (NT x 1) vector stacking the observations y;;
» W= (y-1,...,y—p, X) is the (NT x k) matrix
stacking observations on the lags of the dependent

variable (yi¢—1,...,¥it—p) and the exogenous
explanatory variables z;;

Conclusion

» 6 =(v,3) is the k x 1 parameter vector of interest

» Disa NT x N dummy variable matrix calculated as
D = In ® vp with v a T x 1 vector of ones

» the variance-covariance matrix of € is denoted X



The FE estimator

Let Mp = Iy @ (Ip — D(D'D)~'D’) denote the symmetric
and idempotent matrix that transforms the data into
deviations from individual specific sample means

Since MpD = 0, the individual effects o can be eliminated
from the model by multiplying equation (??) by Mp

Mpy =MpWéd + MpDa + Mpe,
J=W6+5, (5)

where y = Mpy denotes the centered dependent variable
and similarly for the other variables. The least squares
estimator for 0 in model (5) defines the FE estimator:

5= (W’W)fl W= (WMpW) ™ W Mpy.  (6)
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An unbiased estimator
The FE estimator ¢ is biased but still an unknown function
of the true parameter vector, i.e.

E@M)LT%:/ﬂm@(ﬂ&Zﬂvdg#& (7)

—00

If we are able to generate a sequence <31, e ,SJ |0, X, T) of

J biased FE estimates 0 for §, the integral in equation (7)
can be written as

J
G S T) = lm 5657 ()
j=1

= 57"3 is an unbiased estimator for ¢ if it satisfies

J
< . 1 T | 5be
LﬁgJ;@bjf. (9)
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Proposition in Everaert & Pozzi (2007)

For any specific value of 6*, the condition in equation (9)
can be evaluated by generating J bootstrap samples from
the data generating process in equation (??) and applying
FE to each of the samples to obtain the sequence

(31, b |6*,Z,T)

The bias-corrected 6°¢ can then be obtained by searching
over different parameter values §* until equation (9) is
satisfied

The search for 6°¢ can be performed efficiently by iteratively
updating the parameter vector §* used for the creation of
bootstrap samples, taking the original biased FE estimate as
the best initial guess (5?0) =9).

Bootstrap-based
bias correction

De Vos, Everaert
and Ruyssen

Conclusion



Outline bootstrap algorithm es conection
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The iterative bootstrap bias-correction procedure is given by
the following steps:

1. Using equation (5) and the original centered data,

calculate the residuals as €= 7 — Wéz‘ﬂ)

2. Obtain J bootstrap samples, where in each sample
j=1,....J:
2.1 Draw a bootstrap sample £® from £ according to a
specified (re)sampling scheme.
2.2 Calculate the bootstrap sample y* = Wbdz‘n) + &b where
Wb = (ybla"'ay—va)
2.3 Use FE to estimate 5 (Wb MpW) = WY Mpyb

Conclusion

3. Calculate w,) = =521 ZJ 1 ]
4. Update the parameter vector 6( = 56@) + wik)



Notes

The bias of the FE estimator is invariant to the variance of
the individual effects « as these are effectively wiped out by
centering the data— we simplify the bootstrap algorithm as
there is no need to estimate the individual effects o and use
them to generate the data

In step 2(a) the bootstrap errors £® should be drawn
consistently with the variance-covariance structure in the
population error terms ¢, as represented by ¥ — Various
(re)sampling schemes are discussed in the paper

Furthermore, the calculation of the bootstrap data %, in
step 2(b) requires initial values for (yf’y_(p_l), ) —
The choice of how these initial values should be generated
implicitly entails a decision about the initial conditions of the
data
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