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Motivation

Inference on peer effects has received considerable attention.

One difficulty is that of self-selection of peer groups.

(Quasi) randomization of peer assignment has proven a fruitful way forward.

Education: Sacerdote (2001) and Zimmerman (2003).

Workplace: Bandiera et al. (2009) and Mas and Moretti (2009).

Even given network exogeneity, (accurate) inference on peer effects is known
to be challenging.

Develop a test that can be used to verify

The (conditional) random assignment to peer groups.

The presence of peer effects in linear-in-means model.



Connections to the literature

The test is a bias-corrected version of an idea introduced in Sacerdote (2001).

Related literature:

Guryan, Kroft and Notowidigdo (2009):

Augmented-regression test and randomization test.

Stevenson (2015, 2017):

Sample-splitting approach.

Caeyers and Fafchamps (2020):

Calculation of probability limit in a simple case.

Test developed here is more general.

Underlying calculations allow to derive theory for Guryan et al. (2009).



Setting

Stratified data on r independent urns of size n1, . . . , nr.

Peer assignment in urn g is recorded in the ng × ng adjacency matrix

(Ag)i,j :=

{
1 if i and j are peers
0 if they are not

.

Individuals cannot be their own peer.

Peer groups can be of different sizes and are allowed to overlap; mg(i) is the
number of peers, mg(i ∩ j) is the number of common peers.

In Sacerdote (2001): Freshmen are put into urns based on their response to
a set of survey questions (gender, smoker, etc). Then randomly assigned to
rooms within each urn.

In Guryan, Kroft and Notowidigdo (2009): PGA golf players are randomly
assigned playing partners from the set of participants within the same player
category.



Default test

Random assignment implies that observables xg,i and xg,j are uncorrelated
within urns for all j ∈ [i], with

[i] := {j : (Ag)i,j = 1}

the set of i’s peers.

A standard test (Sacerdote 2001) is based on within-urn regression of xg,i on

x̄g,[i] := mg(i)
−1

ng∑
j=1

(Ag)i,j xg,j ,

the average characteristic of i’s peers.

Test whether the slope coefficient is zero via a (two-sided) t-test.

Under the null this test tends to find negative assortative matching (Guryan
et al. 2009).



Bias

The within-urn estimator, ρ̂, is defined as

r∑
g=1

ng∑
i=1

x̄g,[i]
(
x̃g,i − ρ̂ ˜̄xg,[i]

)
= 0,

where x̃g,i and ˜̄xg,[i] are deviations from within-urn means.

Impose the urn-level homoskedasticity assumption E0((xg,i − E0(xg,i))
2) =:

σ2
g (for now).

The normal equation has bias

E0

(
r∑
g=1

ng∑
i=1

x̄g,[i] x̃g,i

)
= −

r∑
g=1

σ2
g ,

so that ρ̂ is inconsistent under many-urn asymptotics.



Calculation

Without loss of generality, set urn effects to zero. Then

E0(xg,i xg,j |Ag) =

{
σ2
g if i = j

0 if i 6= j
.

The bias is

E0

(
r∑
g=1

ng∑
i=1

x̄g,[i] x̃g,i

)
=

r∑
g=1

E0

( ng∑
i=1

x̄g,[i] xg,i

)
−

r∑
g=1

E0

( ng∑
i=1

x̄g,[i] xg

)
.

Here,

E0

( ng∑
i=1

x̄g,[i] xg,i

)
= E0

( ng∑
i=1

ng∑
j=1

(Ag)i,j xg,j xg,i
mg(i)

)

= E0

 ng∑
i=1

∑
j 6=i

(Ag)i,j E0(xg,j xg,i|Ag)

mg(i)


= 0.



Also,

E0

( ng∑
i=1

x̄g,[i] xg

)
= E0

 1

ng

ng∑
i=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j xg,j xg,j′

mg(i)


= E0

 1

ng

ng∑
i=1

ng∑
j=1

ng∑
j′=1

(Ag)i,j E0(xg,j xg,j′ |Ag)

mg(i)


= E0

(
1

ng

ng∑
i=1

ng∑
j=1

(Ag)i,j E0(x2g,j |Ag)

mg(i)

)

= E0

(
1

ng

ng∑
i=1

∑ng

j=1(Ag)i,j

mg(i)

)
σ2
g

= σ2
g ,

from which the result follows.



Probability limit

Can show that, under the null, plimr→∞ ρ̂ equals

−
limr→∞

1
r

∑r
g=1 σ

2
g

limr→∞
1
r

∑r
g=1 σ

2
g E0

(∑ng

i=1
1

mg(i)
− 1

ng

∑ng

i=1

∑ng

j=1
mg(i∩ j)

mg(i)mg(j)

) .

When n1 = · · · = nr =: n, and mg(i) =: m and mg(i ∩ j) = 0 for all
individuals and urns,

plimr→∞ ρ̂ = − m

n−m,

which agrees with a result of Caeyers and Fafchamps (2020) but is obtained
under weaker conditions.



Bias adjustment

An unbiased estimator of σ2
g (under the null) is

1

ng − 1

ng∑
i=1

xg,i x̃g,i.

The re-centered covariance

qHO
r :=

r∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

)
will be exactly unbiased under random assignment.

Its standard deviation can be estimated by

sHO
r :=

√√√√ r∑
g=1

( ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

))2

.



Corrected test

An adjusted test statistic follows as

tHO
r := qHO

r /sHO
r .

Let br := E(qHO
r ) = O(

√
r) be a non-stochastic sequence of constants.

Let P(ng > 2) = 1. If maxg,i E(x8g,i) = O(1) and maxg,i(var(x2g,i))
−1 = O(1),

then

tHO
r − br

sHO
r

d→ N(0, 1),

as r →∞.

Implication is that, for any α ∈ (0, 1),

lim
r→∞

P0

(
tHO
r > z1−α

)
= α,

where zα is the α-quantile of the standard-normal distribution.



Power

The test is consistent against endogenous-, contextual-, and correlated-effect
alternatives (Manski 1993).

Endogenous-effect alternatives:

xg,i = ρ x̄g,[i] + εg,i, εg,i ∼ independent (αg, σ
2
g),

where −1 < ρ < 1 and εg,i independent of Ag.

Local alternative: ρ = %/
√
r.

With A1, . . . ,Ar i.i.d. , homoskedasticity, and no overlap in peer groups,

tHO
r

d→ N(µ, 1) where

µ := %

√√√√2E

( ng∑
i=1

1

mg(i)
− ng
ng − 1

)
> 0.



Locally asymptotically equivalent to contextual-effect alternatives:

xg,i = εg,i +
θ

mg(i)

ng∑
j=1

(Ag)i,j εg,j

for θ = ϑ/
√
r.

That is, non-centrality parameter is the same:

µ := ϑ

√√√√2E

( ng∑
i=1

1

mg(i)
− ng
ng − 1

)
> 0.

Not a surprising finding in light of the time-series literature on testing against
autoregressive alternatives and moving-average alternatives (e.g., Godfrey
1981).



Correlated-effect alternatives:

E(xg,i xg,i′ |(Ag)i,i′ = 1) = σ2
η

and

E(xg,i xg,i′ |(Ag)i,i′ = 0) =

{
σ2
η + σ2

g if i = i′

0 if i 6= i′

for σ2
η > 0.

Here, local alternatives have σ2
η = ς2/

√
r, and

µ =
ς2

σ2

E
(

(ng − 1)− 1
ng

∑ng

i=1
mg(i)

ng−1

)
√

2E
(∑ng

i=1
1

mg(i)
− ng

ng−1

) > 0

depends on the ratio ς2/σ2.



An alternative test

Guryan et al. (2009): ‘default test fails because i cannot be his own peer.’

Informal adjustment to the default test is to include the leave-own-out urn
average

1

ng − 1

∑
j 6=i

xg,j =
ng

ng − 1

(
xg −

xg,i
ng

)
as a control variable in the within-urn regression.

Because of the presence of fixed effects, this is equivalent to including
xg,i/(ng − 1) as additional control variable.

Requires variation in urn sizes to prevent a perfect fit (that satisfies the null).

By now a commonly-used test.

No theory available for this approach.



Can show that this approach tests whether

r∑
g=1

ng∑
i=1

x̃g,i

(
x̄g,[i] +

xg,i
ng − 1

) (
1− δ

ng − 1

)
+ op(

√
r),

is statistically different from zero. Here,

δ :=
limr→∞

1
r

∑r
g=1 σ

2
g

limr→∞
1
r

∑r
g=1 σ

2
g E0

(
1

ng−1

) ,
is the probability limit of the slope coefficient of a within-group regression of
xg,i on xg,i/(ng − 1), under the null.

This finding can be used to confirm that the test is size correct but also to
show that it will often have low power.

This formalizes discussions in Stevenson (2015, 2017) and Caeyers and
Fafchamps (2020).



Illustrations

Urns of two different sizes ng ∈ {n1, n2}, with n1 < n2 and pn := P(ng = n2).

Non-centrality parameter of the Guryan et al.(2009) statistic is

µ∗ :=
√
pn(1− pn)

b(n̄2)− b(n̄1)√
v(n̄1) pn + v(n̄2) (1− pn)

,

where b(n) and v(n) are the bias and variance of

ng∑
i=1

x̃g,i (x̄g,[i] + xg,i/(ng − 1))

conditional on ng = n.

Clearly, µ∗ → 0 as pn(1− pn)→ 0.

Also low power when b(n̄2)− b(n̄1) is small.

Here, bias from different urn sizes cancel out. Such situations can easily be
constructed.



Illustrate this graphically for settings where r = 25 and

n1 = 4 and n2 = 6.

Non-overlapping peer groups, with

mg(i) = 1 when ng = 4

mg(i) = 2 with pm := P(mg(i) = 2), mg(i) = 1 with (1− pm) when ng = 6.



Endogenous-effect alternatives
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Correlated-effect alternatives
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Alternative design (Guryan et al. 2009; Stevenson 2015)

r = 100.

ng ∈ {39, 42, 45, 48, 51}.

mg(i) = 2, no overlap.
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Heteroskedasticity

Now let σ2
g,i := E0((xg,i − E0(xg,i))

2).

We have

E0

(
r∑
g=1

ng∑
i=1

x̄g,[i] x̃g,i

)
= −

r∑
g=1

E0

(
1

n g

ng∑
i=1

1

mg(i)

ng∑
j=1

(Ag)i,j σ
2
g,j

)
.

An unbiased estimator of this bias is

−
r∑
g=1

ng∑
i=1

ωg,i xg,i x̃g,i, ωg,i :=
1

ng − 2

∑
i′∈[i]

1

mg(i′)
− 1

ng − 1

 .

This builds on Hartley, Rao and Kiefer (1969).

When peer groups do not overlap mg(i
′) = mg(i) for all i′ ∈ [i], and so

ωg,i =
1

ng − 1
.

Consequently, tHO
r is robust to heteroskedasticity in this case.



More generally,

qHC
r :=

r∑
g=1

ng∑
i=1

x̃g,i
(
x̄g,[i] + ωg,i xg,i

)
is exactly unbiased.

A heteroskedasticity-robust test statistic is

tHC
r := qHC

r /sHC
r ,

where

sHC
r :=

√√√√ r∑
g=1

( ng∑
i=1

x̃g,i
(
x̄g,[i] + ωg,i xg,i

))2

.



Controlling for covariates

The approach can be modified to a setting where assignment to peer groups is
random only conditional on a further set of covariates, wg,i, say, by appealing
to the Frisch-Waugh-Lovell theorem.

Let ẋg,i be the residual from a within-urn regression of xg,i on wg,i.

Then the test statistic is
t̂HO
r := q̂HO

r /ŝHO
r ,

where

q̂HO
r :=

r∑
g=1

ng∑
i=1

ẋg,i

(
x̄g,[i] +

xg,i
ng − 1

)
and

ŝHO
r :=

√√√√ r∑
g=1

( ng∑
i=1

ẋg,i

(
x̄g,[i] +

xg,i
ng − 1

))2

.

The heteroskedasticity-robust statistic tHC
r can be modified in the same way.



Empirical example: PGA tournaments

Participants to PGA tournaments get randomly assigned playing partners
from the same ‘player category’ (1, 1a, 2 or 3).

Marginal on ‘player category’ assignment is not random.

Data from Guryan et al. (2009), spanning 3 seasons (2002, 2005, 2006) and
covering 81 tournaments.

Ability measure used is golfer’s ‘handicap’ (centered around 72).



PGA Tour data

n obs mean std min max
ability (xg,i)

cat 1 3,205 -3.138 0.769 -5.159 1.440
cat 1a 3,436 -2.808 0.740 -4.326 6.732
cat 2 1,503 -2.857 0.894 -4.776 3.275
cat 3 657 -1.662 1.470 -4.776 6.315

peer ability (x̄g,[i])

cat 1 3,205 -3.132 0.599 -5.081 0.672
cat 1a 3,436 -2.811 0.591 -4.530 3.275
cat 2 1,503 -2.850 0.744 -4.776 3.275
cat 3 657 -1.690 1.270 -4.776 6.315

urn size (ng)

tourn by cat 8,791 39.292 16.869 3 83
weight ((ng − 1)−1)

tourn by cat 8,791 0.037 0.040 0.012 0.500



Stata: rassign.do




